Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
efcd1c08
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
efcd1c08
编写于
5月 22, 2020
作者:
F
frankwhzhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix model style
上级
ee6bd53b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
78 addition
and
81 deletion
+78
-81
core/model.py
core/model.py
+22
-6
models/rerank/listwise/model.py
models/rerank/listwise/model.py
+54
-65
models/rerank/listwise/random_infer_reader.py
models/rerank/listwise/random_infer_reader.py
+1
-5
models/rerank/listwise/random_reader.py
models/rerank/listwise/random_reader.py
+1
-5
未找到文件。
core/model.py
浏览文件 @
efcd1c08
...
...
@@ -133,12 +133,28 @@ class Model(object):
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
@
abc
.
abstractmethod
def
input_data
(
self
,
is_infer
=
False
):
return
None
def
net
(
self
,
is_infer
=
False
):
return
None
def
train_net
(
self
):
"""R
"""
pass
input_data
=
self
.
input_data
(
is_infer
=
False
)
self
.
_data_var
=
input_data
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
net
(
input_data
,
is_infer
=
False
)
@
abc
.
abstractmethod
def
infer_net
(
self
):
pass
input_data
=
self
.
input_data
(
is_infer
=
True
)
self
.
_infer_data_var
=
input_data
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
net
(
input_data
,
is_infer
=
True
)
models/rerank/listwise/model.py
浏览文件 @
efcd1c08
...
...
@@ -56,67 +56,11 @@ class Model(ModelBase):
inputs
=
[
user_slot_names
]
+
[
item_slot_names
]
+
[
lens
]
+
[
labels
]
# demo: hot to use is_infer:
if
is_infer
:
self
.
_infer_data_var
=
inputs
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
return
inputs
else
:
self
.
_data_var
=
inputs
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
return
inputs
def
_fluid_sequence_pad
(
self
,
input
,
pad_value
,
maxlen
=
None
):
"""
args:
input: (batch*seq_len, dim)
returns:
(batch, max_seq_len, dim)
"""
pad_value
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
assign
(
input
=
np
.
array
([
pad_value
],
'float32'
)),
input
.
dtype
)
input_padded
,
_
=
fluid
.
layers
.
sequence_pad
(
input
,
pad_value
,
maxlen
=
maxlen
)
# (batch, max_seq_len, 1), (batch, 1)
# TODO, maxlen=300, used to solve issues: https://github.com/PaddlePaddle/Paddle/issues/14164
return
input_padded
def
_fluid_sequence_get_pos
(
self
,
lodtensor
):
"""
args:
lodtensor: lod = [[0,4,7]]
return:
pos: lod = [[0,4,7]]
data = [0,1,2,3,0,1,3]
shape = [-1, 1]
"""
lodtensor
=
fluid
.
layers
.
reduce_sum
(
lodtensor
,
dim
=
1
,
keep_dim
=
True
)
assert
lodtensor
.
shape
==
(
-
1
,
1
),
(
lodtensor
.
shape
())
ones
=
fluid
.
layers
.
cast
(
lodtensor
*
0
+
1
,
'float32'
)
# (batch*seq_len, 1)
ones_padded
=
self
.
_fluid_sequence_pad
(
ones
,
0
)
# (batch, max_seq_len, 1)
ones_padded
=
fluid
.
layers
.
squeeze
(
ones_padded
,
[
2
])
# (batch, max_seq_len)
seq_len
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
ones_padded
,
1
,
keep_dim
=
True
),
'int64'
)
# (batch, 1)
seq_len
=
fluid
.
layers
.
squeeze
(
seq_len
,
[
1
])
pos
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
cumsum
(
ones_padded
,
1
,
exclusive
=
True
),
'int64'
)
pos
=
fluid
.
layers
.
sequence_unpad
(
pos
,
seq_len
)
# (batch*seq_len, 1)
pos
.
stop_gradient
=
True
return
pos
return
inputs
def
net
(
self
,
inputs
,
is_infer
=
False
):
# user encode
...
...
@@ -225,10 +169,55 @@ class Model(ModelBase):
self
.
_cost
=
loss
self
.
_metrics
[
'auc'
]
=
auc_val
def
train_net
(
self
):
input_data
=
self
.
input_data
()
self
.
net
(
input_data
)
def
_fluid_sequence_pad
(
self
,
input
,
pad_value
,
maxlen
=
None
):
"""
args:
input: (batch*seq_len, dim)
returns:
(batch, max_seq_len, dim)
"""
pad_value
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
assign
(
input
=
np
.
array
([
pad_value
],
'float32'
)),
input
.
dtype
)
input_padded
,
_
=
fluid
.
layers
.
sequence_pad
(
input
,
pad_value
,
maxlen
=
maxlen
)
# (batch, max_seq_len, 1), (batch, 1)
# TODO, maxlen=300, used to solve issues: https://github.com/PaddlePaddle/Paddle/issues/14164
return
input_padded
def
_fluid_sequence_get_pos
(
self
,
lodtensor
):
"""
args:
lodtensor: lod = [[0,4,7]]
return:
pos: lod = [[0,4,7]]
data = [0,1,2,3,0,1,3]
shape = [-1, 1]
"""
lodtensor
=
fluid
.
layers
.
reduce_sum
(
lodtensor
,
dim
=
1
,
keep_dim
=
True
)
assert
lodtensor
.
shape
==
(
-
1
,
1
),
(
lodtensor
.
shape
())
ones
=
fluid
.
layers
.
cast
(
lodtensor
*
0
+
1
,
'float32'
)
# (batch*seq_len, 1)
ones_padded
=
self
.
_fluid_sequence_pad
(
ones
,
0
)
# (batch, max_seq_len, 1)
ones_padded
=
fluid
.
layers
.
squeeze
(
ones_padded
,
[
2
])
# (batch, max_seq_len)
seq_len
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
ones_padded
,
1
,
keep_dim
=
True
),
'int64'
)
# (batch, 1)
seq_len
=
fluid
.
layers
.
squeeze
(
seq_len
,
[
1
])
pos
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
cumsum
(
ones_padded
,
1
,
exclusive
=
True
),
'int64'
)
pos
=
fluid
.
layers
.
sequence_unpad
(
pos
,
seq_len
)
# (batch*seq_len, 1)
pos
.
stop_gradient
=
True
return
pos
#def train_net(self):
# input_data = self.input_data()
# self.net(input_data)
def
infer_net
(
self
):
input_data
=
self
.
input_data
(
is_infer
=
True
)
self
.
net
(
input_data
,
is_infer
=
True
)
#
def infer_net(self):
#
input_data = self.input_data(is_infer=True)
#
self.net(input_data, is_infer=True)
models/rerank/listwise/random_infer_reader.py
浏览文件 @
efcd1c08
...
...
@@ -44,11 +44,7 @@ class EvaluateReader(Reader):
length
=
[
self
.
item_len
]
*
self
.
batch_size
label
=
np
.
random
.
randint
(
2
,
size
=
(
self
.
batch_size
,
self
.
item_len
)).
tolist
()
output
=
[]
output
.
append
(
user_slot_name
)
output
.
append
(
item_slot_name
)
output
.
append
(
length
)
output
.
append
(
label
)
output
=
[
user_slot_name
,
item_slot_name
,
length
,
label
]
yield
output
...
...
models/rerank/listwise/random_reader.py
浏览文件 @
efcd1c08
...
...
@@ -44,11 +44,7 @@ class TrainReader(Reader):
length
=
[
self
.
item_len
]
*
self
.
batch_size
label
=
np
.
random
.
randint
(
2
,
size
=
(
self
.
batch_size
,
self
.
item_len
)).
tolist
()
output
=
[]
output
.
append
(
user_slot_name
)
output
.
append
(
item_slot_name
)
output
.
append
(
length
)
output
.
append
(
label
)
output
=
[
user_slot_name
,
item_slot_name
,
length
,
label
]
yield
output
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录