Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
ead2a1a9
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ead2a1a9
编写于
3月 05, 2020
作者:
X
xiexionghang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
commit kagle for paddle
上级
28ed5927
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
15 addition
and
376 deletion
+15
-376
kagle/kagle_table.py
kagle/kagle_table.py
+15
-3
kagle/kagle_trainer.py
kagle/kagle_trainer.py
+0
-373
未找到文件。
kagle/kagle_table.py
浏览文件 @
ead2a1a9
"""
Construct ParamTable Meta
"""
import
copy
import
yaml
from
abc
import
ABCMeta
,
abstractmethod
class
TableMeta
:
class
TableMeta
(
object
):
"""
Simple ParamTable Meta, Contain table_id
"""
TableId
=
1
@
staticmethod
def
alloc_new_table
(
table_id
):
"""
create table with table_id
Args:
table_id(int)
Return:
table(TableMeta) : a TableMeta instance with table_id
"""
if
table_id
<
0
:
table_id
=
TableMeta
.
TableId
if
table_id
>=
TableMeta
.
TableId
:
...
...
@@ -15,5 +27,5 @@ class TableMeta:
return
table
def
__init__
(
self
,
table_id
):
""" """
self
.
_table_id
=
table_id
pass
kagle/kagle_trainer.py
已删除
100755 → 0
浏览文件 @
28ed5927
import
sys
import
copy
import
yaml
import
time
import
json
import
datetime
import
kagle_fs
import
kagle_util
import
kagle_model
import
kagle_dataset
import
kagle_metric
import
paddle.fluid
as
fluid
from
abc
import
ABCMeta
,
abstractmethod
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
class
Trainer
(
object
):
__metaclass__
=
ABCMeta
def
__init__
(
self
,
config
):
self
.
_status_processor
=
{}
self
.
_context
=
{
'status'
:
'uninit'
,
'is_exit'
:
False
}
def
regist_context_processor
(
self
,
status_name
,
processor
):
self
.
_status_processor
[
status_name
]
=
processor
def
context_process
(
self
,
context
):
if
context
[
'status'
]
in
self
.
_status_processor
:
self
.
_status_processor
[
context
[
'status'
]](
context
)
else
:
self
.
other_status_processor
(
context
)
def
other_status_processor
(
self
,
context
):
print
(
'unknow context_status:%s, do nothing'
%
context
[
'status'
])
time
.
sleep
(
60
)
def
reload_train_context
(
self
):
pass
def
run
(
self
):
while
True
:
self
.
reload_train_context
()
self
.
context_process
(
self
.
_context
)
if
self
.
_context
[
'is_exit'
]:
break
class
AbacusPaddleTrainer
(
Trainer
):
def
__init__
(
self
,
config
):
Trainer
.
__init__
(
self
,
config
)
config
[
'output_path'
]
=
kagle_util
.
get_absolute_path
(
config
[
'output_path'
],
config
[
'io'
][
'afs'
])
self
.
global_config
=
config
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
_exector_context
=
{}
self
.
_metrics
=
{}
self
.
_path_generator
=
kagle_util
.
PathGenerator
({
'templates'
:
[
{
'name'
:
'xbox_base_done'
,
'template'
:
config
[
'output_path'
]
+
'/xbox_base_done.txt'
},
{
'name'
:
'xbox_delta_done'
,
'template'
:
config
[
'output_path'
]
+
'/xbox_patch_done.txt'
},
{
'name'
:
'xbox_base'
,
'template'
:
config
[
'output_path'
]
+
'/xbox/{day}/base/'
},
{
'name'
:
'xbox_delta'
,
'template'
:
config
[
'output_path'
]
+
'/xbox/{day}/delta-{pass_id}/'
},
{
'name'
:
'batch_model'
,
'template'
:
config
[
'output_path'
]
+
'/batch_model/{day}/{pass_id}/'
}
]
})
if
'path_generator'
in
config
:
self
.
_path_generator
.
add_path_template
(
config
[
'path_generator'
])
self
.
regist_context_processor
(
'uninit'
,
self
.
init
)
self
.
regist_context_processor
(
'startup'
,
self
.
startup
)
self
.
regist_context_processor
(
'begin_day'
,
self
.
begin_day
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
train_pass
)
self
.
regist_context_processor
(
'end_day'
,
self
.
end_day
)
def
init
(
self
,
context
):
fleet
.
init
(
self
.
_exe
)
data_var_list
=
[]
data_var_name_dict
=
{}
runnnable_scope
=
[]
runnnable_cost_op
=
[]
context
[
'status'
]
=
'startup'
for
executor
in
self
.
global_config
[
'executor'
]:
scope
=
fluid
.
Scope
()
self
.
_exector_context
[
executor
[
'name'
]]
=
{}
self
.
_exector_context
[
executor
[
'name'
]][
'scope'
]
=
scope
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
=
kagle_model
.
create
(
executor
)
model
=
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
self
.
_metrics
.
update
(
model
.
get_metrics
())
runnnable_scope
.
append
(
scope
)
runnnable_cost_op
.
append
(
model
.
get_cost_op
())
for
var
in
model
.
_data_var
:
if
var
.
name
in
data_var_name_dict
:
continue
data_var_list
.
append
(
var
)
data_var_name_dict
[
var
.
name
]
=
var
optimizer
=
kagle_model
.
FluidModel
.
build_optimizer
({
'metrics'
:
self
.
_metrics
,
'optimizer_conf'
:
self
.
global_config
[
'optimizer'
]
})
optimizer
.
minimize
(
runnnable_cost_op
,
runnnable_scope
)
for
executor
in
self
.
global_config
[
'executor'
]:
scope
=
self
.
_exector_context
[
executor
[
'name'
]][
'scope'
]
model
=
self
.
_exector_context
[
executor
[
'name'
]][
'model'
]
program
=
model
.
_build_param
[
'model'
][
'train_program'
]
if
not
executor
[
'is_update_sparse'
]:
program
.
_fleet_opt
[
"program_configs"
][
str
(
id
(
model
.
get_cost_op
().
block
.
program
))][
"push_sparse"
]
=
[]
if
'train_thread_num'
not
in
executor
:
executor
[
'train_thread_num'
]
=
global_config
[
'train_thread_num'
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
run
(
model
.
_build_param
[
'model'
][
'startup_program'
])
model
.
dump_model_program
(
'./'
)
#server init done
if
fleet
.
is_server
():
return
0
self
.
_dataset
=
{}
for
dataset_item
in
self
.
global_config
[
'dataset'
][
'data_list'
]:
dataset_item
[
'data_vars'
]
=
data_var_list
dataset_item
.
update
(
self
.
global_config
[
'io'
][
'afs'
])
dataset_item
[
"batch_size"
]
=
self
.
global_config
[
'batch_size'
]
self
.
_dataset
[
dataset_item
[
'name'
]]
=
kagle_dataset
.
FluidTimeSplitDataset
(
dataset_item
)
#if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= last_day and config.reqi_dnn_plugin_pass >= last_pass:
# util.reqi_changeslot(config.hdfs_dnn_plugin_path, join_save_params, common_save_params, update_save_params, scope2, scope3)
fleet
.
init_worker
()
pass
def
print_log
(
self
,
log_str
,
params
):
params
[
'index'
]
=
fleet
.
worker_index
()
return
kagle_util
.
print_log
(
log_str
,
params
)
def
print_global_metrics
(
self
,
scope
,
model
,
monitor_data
,
stdout_str
):
metrics
=
model
.
get_metrics
()
metric_calculator
=
kagle_metric
.
PaddleAUCMetric
(
None
)
for
metric
in
metrics
:
metric_param
=
{
'label'
:
metric
,
'metric_dict'
:
metrics
[
metric
]}
metric_calculator
.
calculate
(
scope
,
metric_param
)
metric_result
=
metric_calculator
.
get_result_to_string
()
self
.
print_log
(
metric_result
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
monitor_data
+=
metric_result
metric_calculator
.
clear
(
scope
,
metric_param
)
def
save_model
(
self
,
day
,
pass_index
,
base_key
):
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save model cost %s sec'
})
model_path
=
self
.
_path_generator
.
generate_path
(
'batch_model'
,
{
'day'
:
day
,
'pass_id'
:
pass_index
})
save_mode
=
0
# just save all
if
pass_index
<
1
:
#batch_model
save_mode
=
3
# unseen_day++, save all
kagle_util
.
rank0_print
(
"going to save_model %s"
%
model_path
)
fleet
.
save_persistables
(
None
,
model_path
,
mode
=
save_mode
)
self
.
_train_pass
.
save_train_progress
(
day
,
pass_index
,
base_key
,
model_path
,
is_checkpoint
=
True
)
cost_printer
.
done
()
return
model_path
def
save_xbox_model
(
self
,
day
,
pass_index
,
xbox_base_key
,
monitor_data
):
stdout_str
=
""
xbox_patch_id
=
str
(
int
(
time
.
time
()))
kagle_util
.
rank0_print
(
"begin save delta model"
)
model_path
=
""
xbox_model_donefile
=
""
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save xbox model cost %s sec'
,
'stdout'
:
stdout_str
})
if
pass_index
<
1
:
save_mode
=
2
xbox_patch_id
=
xbox_base_key
model_path
=
self
.
_path_generator
.
generate_path
(
'xbox_base'
,
{
'day'
:
day
})
xbox_model_donefile
=
self
.
_path_generator
.
generate_path
(
'xbox_base_done'
,
{
'day'
:
day
})
else
:
save_mode
=
1
model_path
=
self
.
_path_generator
.
generate_path
(
'xbox_delta'
,
{
'day'
:
day
,
'pass_id'
:
pass_index
})
xbox_model_donefile
=
self
.
_path_generator
.
generate_path
(
'xbox_delta_done'
,
{
'day'
:
day
})
total_save_num
=
fleet
.
save_persistables
(
None
,
model_path
,
mode
=
save_mode
)
cost_printer
.
done
()
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save cache model cost %s sec'
,
'stdout'
:
stdout_str
})
model_file_handler
=
kagle_fs
.
FileHandler
(
self
.
global_config
[
'io'
][
'afs'
])
if
self
.
global_config
[
'save_cache_model'
]:
cache_save_num
=
fleet
.
save_cache_model
(
None
,
model_path
,
mode
=
save_mode
)
model_file_handler
.
write
(
"file_prefix:part
\n
part_num:16
\n
key_num:%d
\n
"
%
cache_save_num
,
model_path
+
'/000_cache/sparse_cache.meta'
,
'w'
)
cost_printer
.
done
()
kagle_util
.
rank0_print
(
"save xbox cache model done, key_num=%s"
%
cache_save_num
)
save_env_param
=
{
'executor'
:
self
.
_exe
,
'save_combine'
:
True
}
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'save dense model cost %s sec'
,
'stdout'
:
stdout_str
})
for
executor
in
self
.
global_config
[
'executor'
]:
if
'layer_for_inference'
not
in
executor
:
continue
executor_name
=
executor
[
'name'
]
model
=
self
.
_exector_context
[
executor_name
][
'model'
]
save_env_param
[
'inference_list'
]
=
executor
[
'layer_for_inference'
]
save_env_param
[
'scope'
]
=
self
.
_exector_context
[
executor_name
][
'scope'
]
model
.
dump_inference_param
(
save_env_param
)
for
dnn_layer
in
executor
[
'layer_for_inference'
]:
model_file_handler
.
cp
(
dnn_layer
[
'save_file_name'
],
model_path
+
'/dnn_plugin/'
+
dnn_layer
[
'save_file_name'
])
cost_printer
.
done
()
xbox_done_info
=
{
"id"
:
xbox_patch_id
,
"key"
:
xbox_base_key
,
"ins_path"
:
""
,
"ins_tag"
:
"feasign"
,
"partition_type"
:
"2"
,
"record_count"
:
"111111"
,
"monitor_data"
:
monitor_data
,
"mpi_size"
:
str
(
fleet
.
worker_num
()),
"input"
:
model_path
.
rstrip
(
"/"
)
+
"/000"
,
"job_id"
:
kagle_util
.
get_env_value
(
"JOB_ID"
),
"job_name"
:
kagle_util
.
get_env_value
(
"JOB_NAME"
)
}
model_file_handler
.
write
(
json
.
dumps
(
xbox_done_info
)
+
"
\n
"
,
xbox_model_donefile
,
'a'
)
if
pass_index
>
0
:
self
.
_train_pass
.
save_train_progress
(
day
,
pass_index
,
xbox_base_key
,
model_path
,
is_checkpoint
=
False
)
return
stdout_str
def
run_executor
(
self
,
executor_config
,
dataset
,
stdout_str
):
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
xbox_base_key
=
self
.
_train_pass
.
_base_key
executor_name
=
executor_config
[
'name'
]
scope
=
self
.
_exector_context
[
executor_name
][
'scope'
]
model
=
self
.
_exector_context
[
executor_name
][
'model'
]
with
fluid
.
scope_guard
(
scope
):
kagle_util
.
rank0_print
(
"Begin "
+
executor_name
+
" pass"
)
begin
=
time
.
time
()
program
=
model
.
_build_param
[
'model'
][
'train_program'
]
self
.
_exe
.
train_from_dataset
(
program
,
dataset
,
scope
,
thread
=
executor_config
[
'train_thread_num'
],
debug
=
self
.
global_config
[
'debug'
])
end
=
time
.
time
()
local_cost
=
(
end
-
begin
)
/
60.0
avg_cost
=
kagle_util
.
worker_numric_avg
(
local_cost
)
min_cost
=
kagle_util
.
worker_numric_min
(
local_cost
)
max_cost
=
kagle_util
.
worker_numric_max
(
local_cost
)
kagle_util
.
rank0_print
(
"avg train time %s mins, min %s mins, max %s mins"
%
(
avg_cost
,
min_cost
,
max_cost
))
self
.
_exector_context
[
executor_name
][
'cost'
]
=
max_cost
monitor_data
=
""
self
.
print_global_metrics
(
scope
,
model
,
monitor_data
,
stdout_str
)
kagle_util
.
rank0_print
(
"End "
+
executor_name
+
" pass"
)
if
self
.
_train_pass
.
need_dump_inference
(
pass_id
)
and
executor_config
[
'dump_inference_model'
]:
stdout_str
+=
self
.
save_xbox_model
(
day
,
pass_id
,
xbox_base_key
,
monitor_data
)
def
startup
(
self
,
context
):
if
fleet
.
is_server
():
fleet
.
run_server
()
context
[
'status'
]
=
'wait'
return
stdout_str
=
""
self
.
_train_pass
=
kagle_util
.
TimeTrainPass
(
self
.
global_config
)
if
not
self
.
global_config
[
'cold_start'
]:
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'load model cost %s sec'
,
'stdout'
:
stdout_str
})
self
.
print_log
(
"going to load model %s"
%
self
.
_train_pass
.
_checkpoint_model_path
,
{
'master'
:
True
})
#if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= self._train_pass.date()
# and config.reqi_dnn_plugin_pass >= self._pass_id:
# fleet.load_one_table(0, self._train_pass._checkpoint_model_path)
#else:
fleet
.
init_server
(
self
.
_train_pass
.
_checkpoint_model_path
,
mode
=
0
)
cost_printer
.
done
()
if
self
.
global_config
[
'save_first_base'
]:
self
.
print_log
(
"save_first_base=True"
,
{
'master'
:
True
})
self
.
print_log
(
"going to save xbox base model"
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
self
.
_train_pass
.
_base_key
=
int
(
time
.
time
())
stdout_str
+=
self
.
save_xbox_model
(
day
,
0
,
self
.
_train_pass
.
_base_key
,
""
)
context
[
'status'
]
=
'begin_day'
def
begin_day
(
self
,
context
):
stdout_str
=
""
if
not
self
.
_train_pass
.
next
():
context
[
'is_exit'
]
=
True
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
self
.
print_log
(
"======== BEGIN DAY:%s ========"
%
day
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
if
pass_id
==
self
.
_train_pass
.
max_pass_num_day
():
context
[
'status'
]
=
'end_day'
else
:
context
[
'status'
]
=
'train_pass'
def
end_day
(
self
,
context
):
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
xbox_base_key
=
int
(
time
.
time
())
context
[
'status'
]
=
'begin_day'
kagle_util
.
rank0_print
(
"shrink table"
)
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'shrink table done, cost %s sec'
})
fleet
.
shrink_sparse_table
()
for
executor
in
self
.
_exector_context
:
self
.
_exector_context
[
executor
][
'model'
].
shrink
({
'scope'
:
self
.
_exector_context
[
executor
][
'scope'
],
'decay'
:
self
.
global_config
[
'optimizer'
][
'dense_decay_rate'
]
})
cost_printer
.
done
()
next_date
=
self
.
_train_pass
.
date
(
delta_day
=
1
)
kagle_util
.
rank0_print
(
"going to save xbox base model"
)
self
.
save_xbox_model
(
next_date
,
0
,
xbox_base_key
,
""
)
kagle_util
.
rank0_print
(
"going to save batch model"
)
self
.
save_model
(
next_date
,
0
,
xbox_base_key
)
self
.
_train_pass
.
_base_key
=
xbox_base_key
def
train_pass
(
self
,
context
):
stdout_str
=
""
day
=
self
.
_train_pass
.
date
()
pass_id
=
self
.
_train_pass
.
_pass_id
base_key
=
self
.
_train_pass
.
_base_key
pass_time
=
self
.
_train_pass
.
_current_train_time
.
strftime
(
"%Y%m%d%H%M"
)
self
.
print_log
(
" ==== begin delta:%s ========"
%
pass_id
,
{
'master'
:
True
,
'stdout'
:
stdout_str
})
train_begin_time
=
time
.
time
()
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'load into memory done, cost %s sec'
,
'stdout'
:
stdout_str
})
current_dataset
=
{}
for
name
in
self
.
_dataset
:
current_dataset
[
name
]
=
self
.
_dataset
[
name
].
load_dataset
({
'node_num'
:
fleet
.
worker_num
(),
'node_idx'
:
fleet
.
worker_index
(),
'begin_time'
:
pass_time
,
'time_window_min'
:
self
.
_train_pass
.
_interval_per_pass
})
cost_printer
.
done
()
kagle_util
.
rank0_print
(
"going to global shuffle"
)
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'stdout'
:
stdout_str
,
'log_format'
:
'global shuffle done, cost %s sec'
})
for
name
in
current_dataset
:
current_dataset
[
name
].
global_shuffle
(
fleet
,
self
.
global_config
[
'dataset'
][
'shuffle_thread'
])
cost_printer
.
done
()
# str(dataset.get_shuffle_data_size(fleet))
if
self
.
global_config
[
'prefetch_data'
]:
next_pass_time
=
(
self
.
_train_pass
.
_current_train_time
+
datetime
.
timedelta
(
minutes
=
self
.
_train_pass
.
_interval_per_pass
)).
strftime
(
"%Y%m%d%H%M"
)
for
name
in
self
.
_dataset
:
self
.
_dataset
[
name
].
preload_dataset
({
'node_num'
:
fleet
.
worker_num
(),
'node_idx'
:
fleet
.
worker_index
(),
'begin_time'
:
next_pass_time
,
'time_window_min'
:
self
.
_train_pass
.
_interval_per_pass
})
pure_train_begin
=
time
.
time
()
for
executor
in
self
.
global_config
[
'executor'
]:
self
.
run_executor
(
executor
,
current_dataset
[
executor
[
'dataset_name'
]],
stdout_str
)
cost_printer
=
kagle_util
.
CostPrinter
(
kagle_util
.
print_cost
,
{
'master'
:
True
,
'log_format'
:
'release_memory cost %s sec'
})
for
name
in
current_dataset
:
current_dataset
[
name
].
release_memory
()
pure_train_cost
=
time
.
time
()
-
pure_train_begin
if
self
.
_train_pass
.
is_checkpoint_pass
(
pass_id
):
self
.
save_model
(
day
,
pass_id
,
base_key
)
train_end_time
=
time
.
time
()
train_cost
=
train_end_time
-
train_begin_time
other_cost
=
train_cost
-
pure_train_cost
log_str
=
"finished train day %s pass %s time cost:%s sec job time cost:"
%
(
day
,
pass_id
,
train_cost
)
for
executor
in
self
.
_exector_context
:
log_str
+=
'['
+
executor
+
':'
+
str
(
self
.
_exector_context
[
executor
][
'cost'
])
+
']'
log_str
+=
'[other_cost:'
+
str
(
other_cost
)
+
']'
kagle_util
.
rank0_print
(
log_str
)
stdout_str
+=
kagle_util
.
now_time_str
()
+
log_str
sys
.
stdout
.
write
(
stdout_str
)
stdout_str
=
""
if
pass_id
==
self
.
_train_pass
.
max_pass_num_day
():
context
[
'status'
]
=
'end_day'
return
elif
not
self
.
_train_pass
.
next
():
context
[
'is_exit'
]
=
True
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录