Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
e0d38aeb
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e0d38aeb
编写于
6月 15, 2020
作者:
Y
yaoxuefeng
提交者:
GitHub
6月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update readme of rank models (#87)
上级
ff9f311d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
17 addition
and
13 deletion
+17
-13
README.md
README.md
+15
-13
models/rank/readme.md
models/rank/readme.md
+2
-0
未找到文件。
README.md
浏览文件 @
e0d38aeb
...
@@ -45,19 +45,21 @@
...
@@ -45,19 +45,21 @@
| 召回 | [Youtube_dnn](models/recall/youtube_dnn/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf) |
| 召回 | [Youtube_dnn](models/recall/youtube_dnn/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf) |
| 召回 | [NCF](models/recall/ncf/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/pdf/1708.05031.pdf) |
| 召回 | [NCF](models/recall/ncf/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/pdf/1708.05031.pdf) |
| 召回 | [GNN](models/recall/gnn/model.py) | ✓ | ✓ | ✓ | ✓ | [AAAI 2019][Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855) |
| 召回 | [GNN](models/recall/gnn/model.py) | ✓ | ✓ | ✓ | ✓ | [AAAI 2019][Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855) |
| 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [Logistic Regression](models/rank/logistic_regression/model.py) | ✓ | x | ✓ | x | / |
| 排序 | [Dnn](models/rank/dnn/model.py) | ✓ | ✓ | ✓ | ✓ | / |
| 排序 | [Dnn](models/rank/dnn/model.py) | ✓ | ✓ | ✓ | ✓ | / |
| 排序 | [FM](models/rank/fm/model.py) | ✓ | ✓ | ✓ | ✓ | / |
| 排序 | [FM](models/rank/fm/model.py) | ✓ | x | ✓ | x | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf) |
| 排序 | [FFM](models/rank/ffm/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [FFM](models/rank/ffm/model.py) | ✓ | x | ✓ | x | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134) |
| 排序 | [Pnn](models/rank/pnn/model.py) | >=2.0 | >=2.0 | >=2.0 | >=2.0 | / |
| 排序 | [FNN](models/rank/fnn/model.py) | ✓ | x | ✓ | x | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf) |
| 排序 | [DCN](models/rank/dcn/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [Deep Crossing](models/rank/deep_crossing/model.py) | ✓ | x | ✓ | x | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf) |
| 排序 | [NFM](models/rank/nfm/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [Pnn](models/rank/pnn/model.py) | ✓ | x | ✓ | x | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| 排序 | [AFM](models/rank/afm/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [DCN](models/rank/dcn/model.py) | ✓ | x | ✓ | x | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754) |
| 排序 | [DeepFM](models/rank/deepfm/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [NFM](models/rank/nfm/model.py) | ✓ | x | ✓ | x | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777) |
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [AFM](models/rank/afm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [DeepFM](models/rank/deepfm/model.py) | ✓ | x | ✓ | x | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | ✓ | ✓ | x | / |
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | / |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ |[WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)|
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | ✓ | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | ✓ | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | ✓ | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | ✓ | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | ✓ | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | ✓ | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
...
...
models/rank/readme.md
浏览文件 @
e0d38aeb
...
@@ -26,6 +26,8 @@
...
@@ -26,6 +26,8 @@
| Logistic Regression | 逻辑回归 | -- |
| Logistic Regression | 逻辑回归 | -- |
| FM | 因子分解机 |
[
Factorization Machine
](
https://ieeexplore.ieee.org/abstract/document/5694074
)(
2010
)
|
| FM | 因子分解机 |
[
Factorization Machine
](
https://ieeexplore.ieee.org/abstract/document/5694074
)(
2010
)
|
| FFM | Field-Aware FM |
[
Field-aware Factorization Machines for CTR Prediction
](
https://dl.acm.org/doi/pdf/10.1145/2959100.2959134
)(
2016
)
|
| FFM | Field-Aware FM |
[
Field-aware Factorization Machines for CTR Prediction
](
https://dl.acm.org/doi/pdf/10.1145/2959100.2959134
)(
2016
)
|
| FNN | Factorisation-Machine Supported Neural Networks |
[
Deep Learning over Multi-field Categorical Data
](
https://arxiv.org/pdf/1601.02376.pdf
)(
2016
)
|
| Deep Crossing | Deep Crossing |
[
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features
](
https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf
)(
2016
)
|
| PNN | Product Network |
[
Product-based Neural Networks for User Response Prediction
](
https://arxiv.org/pdf/1611.00144.pdf
)(
2016
)
|
| PNN | Product Network |
[
Product-based Neural Networks for User Response Prediction
](
https://arxiv.org/pdf/1611.00144.pdf
)(
2016
)
|
| wide&deep | Deep + wide(LR) |
[
Wide & Deep Learning for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/2988450.2988454
)(
2016
)
|
| wide&deep | Deep + wide(LR) |
[
Wide & Deep Learning for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/2988450.2988454
)(
2016
)
|
| DeepFM | DeepFM |
[
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
](
https://arxiv.org/pdf/1703.04247.pdf
)(
2017
)
|
| DeepFM | DeepFM |
[
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
](
https://arxiv.org/pdf/1703.04247.pdf
)(
2017
)
|
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录