Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
da1c712d
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
da1c712d
编写于
7月 09, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add linear regression
上级
b8e17866
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
478 addition
and
0 deletion
+478
-0
models/rank/linear_regression/__init__.py
models/rank/linear_regression/__init__.py
+13
-0
models/rank/linear_regression/config.yaml
models/rank/linear_regression/config.yaml
+72
-0
models/rank/linear_regression/data/download_preprocess.py
models/rank/linear_regression/data/download_preprocess.py
+37
-0
models/rank/linear_regression/data/preprocess.py
models/rank/linear_regression/data/preprocess.py
+146
-0
models/rank/linear_regression/data/split.py
models/rank/linear_regression/data/split.py
+56
-0
models/rank/linear_regression/data/test_data/data
models/rank/linear_regression/data/test_data/data
+0
-0
models/rank/linear_regression/data/train_data/data
models/rank/linear_regression/data/train_data/data
+0
-0
models/rank/linear_regression/data_prepare.sh
models/rank/linear_regression/data_prepare.sh
+15
-0
models/rank/linear_regression/model.py
models/rank/linear_regression/model.py
+75
-0
models/rank/linear_regression/parse_param.py
models/rank/linear_regression/parse_param.py
+64
-0
未找到文件。
models/rank/linear_regression/__init__.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
models/rank/linear_regression/config.yaml
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug
:
false
workspace
:
"
/home/aistudio/PaddleRec-master/models/rank/linear_regression"
dataset
:
-
name
:
dataset_train
type
:
QueueDataset
batch_size
:
1
data_path
:
"
{workspace}/data/train_data/"
sparse_slots
:
"
userid
gender
age
occupation
movieid
title
genres"
dense_slots
:
"
label:1"
-
name
:
dataset_infer
type
:
QueueDataset
batch_size
:
1
data_path
:
"
{workspace}/data/test_data/"
sparse_slots
:
"
userid
gender
age
occupation
movieid
title
genres"
dense_slots
:
"
label:1"
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
sparse_feature_number
:
1000000
sparse_feature_dim
:
1
reg
:
0.001
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
class
:
train
epochs
:
1
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
100
-
name
:
infer_runner
class
:
infer
device
:
cpu
init_model_path
:
"
increment/0"
print_interval
:
1
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
dataset_train
thread_num
:
12
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/linear_regression/data/download_preprocess.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
sys
LOCAL_PATH
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
TOOLS_PATH
=
os
.
path
.
join
(
LOCAL_PATH
,
".."
,
".."
,
"tools"
)
sys
.
path
.
append
(
TOOLS_PATH
)
from
paddlerec.tools.tools
import
download_file_and_uncompress
,
download_file
if
__name__
==
'__main__'
:
url
=
"http://files.grouplens.org/datasets/movielens/ml-1m.zip"
print
(
"download and extract starting..."
)
download_file_and_uncompress
(
url
)
print
(
"download and extract finished"
)
# print("preprocessing...")
# os.system("python preprocess.py")
# print("preprocess done")
# shutil.rmtree("raw_data")
print
(
"done"
)
models/rank/linear_regression/data/preprocess.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#coding=utf8
import
os
import
sys
reload
(
sys
)
sys
.
setdefaultencoding
(
'utf-8'
)
import
random
import
json
user_fea
=
[
"userid"
,
"gender"
,
"age"
,
"occupation"
]
movie_fea
=
[
"movieid"
,
"title"
,
"genres"
]
rating_fea
=
[
"userid"
,
"movieid"
,
"rating"
,
"time"
]
dict_size
=
1000000
hash_dict
=
dict
()
data_path
=
"ml-1m"
test_user_path
=
"online_user"
def
process
(
path
,
output_path
):
user_dict
=
parse_data
(
data_path
+
"/users.dat"
,
user_fea
)
movie_dict
=
parse_movie_data
(
data_path
+
"/movies.dat"
,
movie_fea
)
res
=
[]
for
line
in
open
(
path
):
line
=
line
.
strip
()
arr
=
line
.
split
(
"::"
)
userid
=
arr
[
0
]
movieid
=
arr
[
1
]
out_str
=
"time:%s
\t
%s
\t
%s
\t
label:%s"
%
(
arr
[
3
],
user_dict
[
userid
],
movie_dict
[
movieid
],
arr
[
2
])
log_id
=
hash
(
out_str
)
%
1000000000
res
.
append
(
"%s
\t
%s"
%
(
log_id
,
out_str
))
with
open
(
output_path
,
'w'
)
as
fout
:
for
line
in
res
:
fout
.
write
(
line
)
fout
.
write
(
"
\n
"
)
def
parse_data
(
file_name
,
feas
):
dict
=
{}
for
line
in
open
(
file_name
):
line
=
line
.
strip
()
arr
=
line
.
split
(
"::"
)
out_str
=
""
for
i
in
range
(
0
,
len
(
feas
)):
out_str
+=
"%s:%s
\t
"
%
(
feas
[
i
],
arr
[
i
])
dict
[
arr
[
0
]]
=
out_str
.
strip
()
return
dict
def
parse_movie_data
(
file_name
,
feas
):
dict
=
{}
for
line
in
open
(
file_name
):
line
=
line
.
strip
()
arr
=
line
.
split
(
"::"
)
title_str
=
""
genres_str
=
""
for
term
in
arr
[
1
].
split
(
" "
):
term
=
term
.
strip
()
if
term
!=
""
:
title_str
+=
"%s "
%
(
term
)
for
term
in
arr
[
2
].
split
(
"|"
):
term
=
term
.
strip
()
if
term
!=
""
:
genres_str
+=
"%s "
%
(
term
)
out_str
=
"movieid:%s
\t
title:%s
\t
genres:%s"
%
(
arr
[
0
],
title_str
.
strip
(),
genres_str
.
strip
())
dict
[
arr
[
0
]]
=
out_str
.
strip
()
return
dict
def
to_hash
(
in_str
):
feas
=
in_str
.
split
(
":"
)[
0
]
arr
=
in_str
.
split
(
":"
)[
1
]
out_str
=
"%s:%s"
%
(
feas
,
(
arr
+
arr
[::
-
1
]
+
arr
[::
-
2
]
+
arr
[::
-
3
]))
hash_id
=
hash
(
out_str
)
%
dict_size
# if hash_id in hash_dict and hash_dict[hash_id] != out_str:
# print(hash_id, out_str, hash(out_str))
# print("conflict")
# exit(-1)
return
"%s:%s"
%
(
feas
,
hash_id
)
def
to_hash_list
(
in_str
):
arr
=
in_str
.
split
(
":"
)
tmp_arr
=
arr
[
1
].
split
(
" "
)
out_str
=
""
for
item
in
tmp_arr
:
item
=
item
.
strip
()
if
item
!=
""
:
key
=
"%s:%s"
%
(
arr
[
0
],
item
)
out_str
+=
"%s "
%
(
to_hash
(
key
))
return
out_str
.
strip
()
def
get_hash
(
path
):
#0-34831 1-time:974673057 2-userid:2021 3-gender:M 4-age:25 5-occupation:0 6-movieid:1345 7-title:Carrie (1976) 8-genres:Horror 9-label:2
for
line
in
open
(
path
):
arr
=
line
.
strip
().
split
(
"
\t
"
)
out_str
=
"logid:%s %s %s %s %s %s %s %s %s %s"
%
\
(
arr
[
0
],
arr
[
1
],
to_hash
(
arr
[
2
]),
to_hash
(
arr
[
3
]),
to_hash
(
arr
[
4
]),
to_hash
(
arr
[
5
]),
\
to_hash
(
arr
[
6
]),
to_hash_list
(
arr
[
7
]),
to_hash_list
(
arr
[
8
]),
arr
[
9
])
print
out_str
def
split
(
path
,
output_dir
,
num
=
24
):
contents
=
[]
with
open
(
path
)
as
f
:
contents
=
f
.
readlines
()
lines_per_file
=
len
(
contents
)
/
num
print
(
"contents: "
,
str
(
len
(
contents
)))
print
(
"lines_per_file: "
,
str
(
lines_per_file
))
for
i
in
range
(
1
,
num
+
1
):
with
open
(
os
.
path
.
join
(
output_dir
,
"part_"
+
str
(
i
)),
'w'
)
as
fout
:
data
=
contents
[(
i
-
1
)
*
lines_per_file
:
min
(
i
*
lines_per_file
,
len
(
contents
))]
for
line
in
data
:
fout
.
write
(
line
)
if
__name__
==
"__main__"
:
random
.
seed
(
1111111
)
if
sys
.
argv
[
1
]
==
"process_raw"
:
process
(
sys
.
argv
[
2
],
sys
.
argv
[
3
])
elif
sys
.
argv
[
1
]
==
"hash"
:
get_hash
(
sys
.
argv
[
2
])
elif
sys
.
argv
[
1
]
==
"split"
:
split
(
sys
.
argv
[
2
],
sys
.
argv
[
3
])
models/rank/linear_regression/data/split.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
random
train
=
dict
()
test
=
dict
()
data_path
=
"ml-1m"
for
line
in
open
(
data_path
+
"/ratings.dat"
):
fea
=
line
.
rstrip
().
split
(
"::"
)
if
fea
[
0
]
not
in
train
:
train
[
fea
[
0
]]
=
[
line
]
elif
fea
[
0
]
not
in
test
:
test
[
fea
[
0
]]
=
dict
()
test
[
fea
[
0
]][
'time'
]
=
int
(
fea
[
3
])
test
[
fea
[
0
]][
'content'
]
=
line
else
:
time
=
int
(
fea
[
3
])
if
time
<=
test
[
fea
[
0
]][
'time'
]:
train
[
fea
[
0
]].
append
(
line
)
else
:
train
[
fea
[
0
]].
append
(
test
[
fea
[
0
]][
'content'
])
test
[
fea
[
0
]][
'time'
]
=
time
test
[
fea
[
0
]][
'content'
]
=
line
train_data
=
[]
for
key
in
train
:
for
line
in
train
[
key
]:
train_data
.
append
(
line
)
random
.
shuffle
(
train_data
)
train_num
=
10000
idx
=
0
with
open
(
data_path
+
"/train.dat"
,
'w'
)
as
f
:
for
line
in
train_data
:
idx
+=
1
if
idx
>
train_num
:
break
f
.
write
(
line
)
with
open
(
data_path
+
"/test.dat"
,
'w'
)
as
f
:
for
key
in
test
:
f
.
write
(
test
[
key
][
'content'
])
models/rank/linear_regression/data/test_data/data
0 → 100644
浏览文件 @
da1c712d
models/rank/linear_regression/data/train_data/data
0 → 100644
浏览文件 @
da1c712d
models/rank/linear_regression/data_prepare.sh
0 → 100644
浏览文件 @
da1c712d
cd
data
# 1. download data
python download_preprocess.py
# 2. split data
python split.py
# 3. 数据拼接
python preprocess.py process_raw ml-1m/train.dat raw_train
python preprocess.py process_raw ml-1m/test.dat raw_test
# 4. hash
python preprocess.py
hash
raw_train
>
train_data/data
python preprocess.py
hash
raw_test
>
test_data/data
cd
..
models/rank/linear_regression/model.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
_init_hyper_parameters
(
self
):
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
)
self
.
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
init_value_
=
0.1
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
# ------------------------- network input --------------------------
sparse_var
=
self
.
_sparse_data_var
self
.
label
=
self
.
_dense_data_var
[
0
]
def
embedding_layer
(
input
):
emb
=
fluid
.
embedding
(
input
=
input
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
size
=
[
self
.
sparse_feature_number
+
1
,
1
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
),
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
self
.
reg
)))
reshape_emb
=
fluid
.
layers
.
reshape
(
emb
,
shape
=
[
-
1
,
1
])
return
reshape_emb
sparse_embed_seq
=
list
(
map
(
embedding_layer
,
sparse_var
))
weight
=
fluid
.
layers
.
concat
(
sparse_embed_seq
,
axis
=
0
)
weight_sum
=
fluid
.
layers
.
reduce_sum
(
weight
)
b_linear
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
0
))
self
.
predict
=
fluid
.
layers
.
relu
(
weight_sum
+
b_linear
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
self
.
predict
,
label
=
self
.
label
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"COST"
]
=
self
.
_cost
self
.
_metrics
[
"Predict"
]
=
self
.
predict
if
is_infer
:
self
.
_infer_results
[
"Predict"
]
=
self
.
predict
self
.
_infer_results
[
"COST"
]
=
self
.
_cost
models/rank/linear_regression/parse_param.py
0 → 100644
浏览文件 @
da1c712d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
sys
params
=
[]
with
open
(
sys
.
argv
[
1
])
as
f
:
for
line
in
f
:
line
=
line
.
strip
().
strip
(
'data: '
).
strip
(
','
).
split
(
','
)
line
=
map
(
float
,
line
)
params
.
append
(
line
)
feas
=
[]
with
open
(
sys
.
argv
[
2
])
as
f
:
for
line
in
f
:
line
=
line
.
strip
().
split
(
'
\t
'
)
feas
.
append
(
line
)
score
=
[]
with
open
(
sys
.
argv
[
3
])
as
f
:
for
line
in
f
:
line
=
float
(
line
.
strip
().
strip
(
'data: '
).
strip
()[
1
:
-
1
])
score
.
append
(
line
)
assert
(
len
(
params
)
==
len
(
feas
))
length
=
len
(
params
)
bias
=
None
for
i
in
range
(
length
):
label
=
feas
[
i
][
-
1
]
tmp
=
feas
[
i
][
2
:
-
3
]
tmp_fea
=
feas
[
i
][
-
3
].
split
(
":"
)
_
=
tmp_fea
[
1
].
split
(
" "
)
for
j
in
range
(
len
(
_
)):
if
_
[
j
]
!=
""
:
tmp
.
append
(
tmp_fea
[
0
]
+
":"
+
_
[
j
])
tmp_fea
=
feas
[
i
][
-
2
].
split
(
":"
)
_
=
tmp_fea
[
1
].
split
(
" "
)
for
j
in
range
(
len
(
_
)):
if
_
[
j
]
!=
""
:
tmp
.
append
(
tmp_fea
[
0
]
+
":"
+
_
[
j
])
sort_p
=
np
.
argsort
(
np
.
array
(
params
[
i
]))[::
-
1
]
res
=
[]
for
j
in
range
(
len
(
sort_p
)):
res
.
append
(
tmp
[
sort_p
[
j
]]
+
"_"
+
str
(
params
[
i
][
sort_p
[
j
]]))
res
.
append
(
label
)
res
.
append
(
str
(
score
[
i
]))
bias
=
score
[
i
]
-
sum
(
params
[
i
])
print
(
"; "
.
join
(
res
))
assert
(
len
(
params
[
i
])
==
len
(
tmp
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录