Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
d9b157b2
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9b157b2
编写于
5月 29, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'yaml1' of
https://github.com/xjqbest/PaddleRec
into modify_yaml
上级
986c7679
a09255fb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
462 addition
and
76 deletion
+462
-76
core/model.py
core/model.py
+22
-10
core/trainers/single_infer.py
core/trainers/single_infer.py
+355
-0
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+29
-25
core/utils/dataloader_instance.py
core/utils/dataloader_instance.py
+12
-4
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+44
-37
未找到文件。
core/model.py
浏览文件 @
d9b157b2
...
...
@@ -59,11 +59,17 @@ class Model(object):
dataset
=
i
break
name
=
"dataset."
+
dataset
[
"name"
]
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
!=
""
or
dense_slots
!=
""
:
if
sparse_slots
==
""
:
sparse_slots
=
[]
else
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
if
dense_slots
==
""
:
dense_slots
=
[]
else
:
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots_shape
=
[[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)
]
for
i
in
dense_slots
]
...
...
@@ -151,11 +157,17 @@ class Model(object):
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
name
=
"dataset."
+
kwargs
.
get
(
"dataset_name"
)
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
!=
""
or
dense_slots
!=
""
:
if
sparse_slots
==
""
:
sparse_slots
=
[]
else
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
if
dense_slots
==
""
:
dense_slots
=
[]
else
:
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots_shape
=
[[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)
]
for
i
in
dense_slots
]
...
...
core/trainers/single_infer.py
0 → 100755
浏览文件 @
d9b157b2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleInfer
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
is
None
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"phase"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
_infer_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
if
type_name
==
"DataLoader"
:
return
None
else
:
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_infer_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
True
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_infer_data_var
,
True
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
4
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
save
(
j
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".fetch_period"
,
20
))
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
infer_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
fetch_vars
=
[]
fetch_alias
=
[]
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".fetch_period"
,
20
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
def
load
(
self
,
is_fleet
=
False
):
name
=
"runner."
+
self
.
_runner_name
+
"."
dirname
=
envs
.
get_global_env
(
"epoch.init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"single_infer going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
load_persistables
(
self
.
_exe
,
dirname
)
def
save
(
self
,
epoch_id
,
is_fleet
=
False
):
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
if
epoch_id
==
-
1
:
return
False
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_inference_model
(
self
.
_exe
,
dirname
,
feed_varnames
,
fetch_vars
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
save_persistables
(
self
.
_exe
,
dirname
)
save_persistables
()
save_inference_model
()
core/trainers/single_trainer.py
浏览文件 @
d9b157b2
...
...
@@ -36,18 +36,18 @@ class SingleTrainer(TranspileTrainer):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
...
...
@@ -61,21 +61,20 @@ class SingleTrainer(TranspileTrainer):
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
if
sparse_slots
is
None
and
dense_slots
is
None
:
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
!=
""
and
dense_slots
!=
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
is
None
:
if
sparse_slots
==
""
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
if
dense_slots
==
""
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
...
...
@@ -101,13 +100,13 @@ class SingleTrainer(TranspileTrainer):
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
(
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
(
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
if
sparse_slots
is
None
and
dense_slots
is
None
:
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
...
...
@@ -125,8 +124,8 @@ class SingleTrainer(TranspileTrainer):
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
(
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
(
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
...
...
@@ -192,7 +191,8 @@ class SingleTrainer(TranspileTrainer):
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
self
.
_env
[
"epochs"
])
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
...
...
@@ -224,7 +224,9 @@ class SingleTrainer(TranspileTrainer):
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".fetch_period"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
...
...
@@ -249,14 +251,15 @@ class SingleTrainer(TranspileTrainer):
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".fetch_period"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
fetch_period
=
20
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
...
...
@@ -287,7 +290,7 @@ class SingleTrainer(TranspileTrainer):
def
load
(
self
,
is_fleet
=
False
):
dirname
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".init_model_path"
,
None
)
if
dirname
is
None
:
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"going to load "
,
dirname
)
if
is_fleet
:
...
...
@@ -311,10 +314,11 @@ class SingleTrainer(TranspileTrainer):
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
None
)
name
+
"save_inference_feed_varnames"
,
[]
)
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
:
name
+
"save_inference_fetch_varnames"
,
[])
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
or
fetch_varnames
==
""
or
\
len
(
feed_varnames
)
==
0
or
len
(
fetch_varnames
)
==
0
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
...
...
core/utils/dataloader_instance.py
浏览文件 @
d9b157b2
...
...
@@ -68,8 +68,12 @@ def slotdataloader_by_name(readerclass, dataset_name, yaml_file):
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
sparse
=
get_global_env
(
name
+
"sparse_slots"
)
dense
=
get_global_env
(
name
+
"dense_slots"
)
sparse
=
get_global_env
(
name
+
"sparse_slots"
,
"#"
)
if
sparse
==
""
:
sparse
=
"#"
dense
=
get_global_env
(
name
+
"dense_slots"
,
"#"
)
if
dense
==
""
:
dense
=
"#"
padding
=
get_global_env
(
name
+
"padding"
,
0
)
reader
=
SlotReader
(
yaml_file
)
reader
.
init
(
sparse
,
dense
,
int
(
padding
))
...
...
@@ -158,8 +162,12 @@ def slotdataloader(readerclass, train, yaml_file):
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
sparse
=
get_global_env
(
"sparse_slots"
,
None
,
namespace
)
dense
=
get_global_env
(
"dense_slots"
,
None
,
namespace
)
sparse
=
get_global_env
(
"sparse_slots"
,
"#"
,
namespace
)
if
sparse
==
""
:
sparse
=
"#"
dense
=
get_global_env
(
"dense_slots"
,
"#"
,
namespace
)
if
dense
==
""
:
dense
=
"#"
padding
=
get_global_env
(
"padding"
,
0
,
namespace
)
reader
=
SlotReader
(
yaml_file
)
reader
.
init
(
sparse
,
dense
,
int
(
padding
))
...
...
models/rank/dnn/config.yaml
浏览文件 @
d9b157b2
...
...
@@ -12,65 +12,72 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# 轮数
epochs
:
10
# 设备
device
:
cpu
# 工作目录
# workspace
workspace
:
"
paddlerec.models.rank.dnn"
#
dataset列表
#
list of dataset
dataset
:
-
name
:
dataset_train
#
名字,用来区分不同的dataset
-
name
:
dataset_train
#
name of dataset to distinguish different datasets
batch_size
:
2
type
:
DataLoader
#
或者
QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
# 数据路径
type
:
DataLoader
#
or
QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
-
name
:
dataset_infer
#
名字,用来区分不同的dataset
-
name
:
dataset_infer
#
name
batch_size
:
2
type
:
DataLoader
#
或者
QueueDataset
data_path
:
"
{workspace}/data/sample_data/t
est"
# 数据路径
type
:
DataLoader
#
or
QueueDataset
data_path
:
"
{workspace}/data/sample_data/t
rain"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
#
超参数
#
hyper parameters of user-defined network
hyper_parameters
:
#
优化器
#
optimizer config
optimizer
:
class
:
Adam
learning_rate
:
0.001
strategy
:
async
#
用户自定义
#
user-defined <key, value> pairs
sparse_inputs_slots
:
27
sparse_feature_number
:
1000001
sparse_feature_dim
:
9
dense_input_dim
:
13
fc_sizes
:
[
512
,
256
,
128
,
32
]
# select runner by name
mode
:
runner1
# runner配置
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
runner1
class
:
single_train
save_checkpoint_interval
:
2
# 保存模型
save_inference_interval
:
4
# 保存预测模型
save_checkpoint_path
:
"
increment"
# 保存模型路径
save_inference_path
:
"
inference"
# 保存预测模型路径
#save_inference_feed_varnames: [] # 预测模型feed vars
#save_inference_fetch_varnames: [] # 预测模型 fetch vars
#init_model_path: "xxxx" # 加载模型
-
name
:
runner2
class
:
single_infer
init_model_path
:
"
increment/0"
# 加载模型
-
name
:
runner1
class
:
single_train
# num of epochs
epochs
:
10
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
10
-
name
:
runner2
class
:
single_infer
# num of epochs
epochs
:
10
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment/0"
# load model path
#
执行器,每轮要跑的所有阶段
#
runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# 模型路径
dataset_name
:
dataset_train
# 名字,用来区分不同的阶段
thread_num
:
1
# 线程数
#
- name: phase2
#
model: "{workspace}/model.py" # 模型路径
#
dataset_name: dataset_infer # 名字,用来区分不同的阶段
#
thread_num: 1 # 线程数
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
#
model: "{workspace}/model.py" # user-defined model
#
dataset_name: dataset_infer # select dataset by name
#
thread_num: 1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录