Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
d889e3ec
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d889e3ec
编写于
5月 29, 2020
作者:
T
tangwei12
提交者:
GitHub
5月 29, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16 from xjqbest/yaml1
modify yaml
上级
e4683727
7f681eb5
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
1018 addition
and
160 deletion
+1018
-160
core/factory.py
core/factory.py
+1
-0
core/model.py
core/model.py
+53
-21
core/reader.py
core/reader.py
+8
-7
core/trainers/single_infer.py
core/trainers/single_infer.py
+355
-0
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+285
-65
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+4
-0
core/utils/dataloader_instance.py
core/utils/dataloader_instance.py
+87
-3
core/utils/dataset_instance.py
core/utils/dataset_instance.py
+2
-2
core/utils/envs.py
core/utils/envs.py
+11
-3
doc/yaml.md
doc/yaml.md
+66
-0
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+65
-32
models/rank/dnn/model.py
models/rank/dnn/model.py
+16
-12
run.py
run.py
+65
-15
未找到文件。
core/factory.py
浏览文件 @
d889e3ec
...
...
@@ -26,6 +26,7 @@ trainers = {}
def
trainer_registry
():
trainers
[
"SingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer.py"
)
trainers
[
"SingleInfer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_infer.py"
)
trainers
[
"ClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"cluster_trainer.py"
)
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
...
...
core/model.py
浏览文件 @
d889e3ec
...
...
@@ -38,18 +38,38 @@ class Model(object):
self
.
_namespace
=
"train.model"
self
.
_platform
=
envs
.
get_platform
()
self
.
_init_hyper_parameters
()
self
.
_env
=
config
self
.
_slot_inited
=
False
def
_init_hyper_parameters
(
self
):
pass
def
_init_slots
(
self
):
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
"train.reader"
)
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
"train.reader"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
def
_init_slots
(
self
,
**
kargs
):
if
self
.
_slot_inited
:
return
self
.
_slot_inited
=
True
dataset
=
{}
model_dict
=
{}
for
i
in
self
.
_env
[
"executor"
]:
if
i
[
"name"
]
==
kargs
[
"name"
]:
model_dict
=
i
break
for
i
in
self
.
_env
[
"dataset"
]:
if
i
[
"name"
]
==
model_dict
[
"dataset_name"
]:
dataset
=
i
break
name
=
"dataset."
+
dataset
[
"name"
]
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
!=
""
or
dense_slots
!=
""
:
if
sparse_slots
==
""
:
sparse_slots
=
[]
else
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
if
dense_slots
==
""
:
dense_slots
=
[]
else
:
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots_shape
=
[[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)
]
for
i
in
dense_slots
]
...
...
@@ -69,14 +89,17 @@ class Model(object):
self
.
_data_var
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
dataset_class
=
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
dataset_class
=
dataset
[
"type"
]
if
dataset_class
==
"DataLoader"
:
self
.
_init_dataloader
()
def
_init_dataloader
(
self
):
def
_init_dataloader
(
self
,
is_infer
=
False
):
if
is_infer
:
data
=
self
.
_infer_data_var
else
:
data
=
self
.
_data_var
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
feed_list
=
data
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
...
...
@@ -103,7 +126,7 @@ class Model(object):
def
get_fetch_period
(
self
):
return
self
.
_fetch_interval
def
_build_optimizer
(
self
,
name
,
lr
):
def
_build_optimizer
(
self
,
name
,
lr
,
strategy
=
None
):
name
=
name
.
upper
()
optimizers
=
[
"SGD"
,
"ADAM"
,
"ADAGRAD"
]
if
name
not
in
optimizers
:
...
...
@@ -130,16 +153,23 @@ class Model(object):
None
,
self
.
_namespace
)
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
def
input_data
(
self
,
is_infer
=
False
):
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
"train.reader"
)
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
"train.reader"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
name
=
"dataset."
+
kwargs
.
get
(
"dataset_name"
)
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
self
.
_sparse_data_var_map
=
{}
self
.
_dense_data_var_map
=
{}
if
sparse_slots
!=
""
or
dense_slots
!=
""
:
if
sparse_slots
==
""
:
sparse_slots
=
[]
else
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
if
dense_slots
==
""
:
dense_slots
=
[]
else
:
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots_shape
=
[[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)
]
for
i
in
dense_slots
]
...
...
@@ -153,12 +183,14 @@ class Model(object):
dtype
=
"float32"
)
data_var_
.
append
(
l
)
self
.
_dense_data_var
.
append
(
l
)
self
.
_dense_data_var_map
[
dense_slots
[
i
]]
=
l
self
.
_sparse_data_var
=
[]
for
name
in
sparse_slots
:
l
=
fluid
.
layers
.
data
(
name
=
name
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
"int64"
)
data_var_
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
self
.
_sparse_data_var_map
[
name
]
=
l
return
data_var_
else
:
...
...
core/reader.py
浏览文件 @
d889e3ec
...
...
@@ -35,9 +35,6 @@ class Reader(dg.MultiSlotDataGenerator):
else
:
raise
ValueError
(
"reader config only support yaml"
)
envs
.
set_global_envs
(
_config
)
envs
.
update_workspace
()
@
abc
.
abstractmethod
def
init
(
self
):
"""init"""
...
...
@@ -58,13 +55,17 @@ class SlotReader(dg.MultiSlotDataGenerator):
_config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
else
:
raise
ValueError
(
"reader config only support yaml"
)
envs
.
set_global_envs
(
_config
)
envs
.
update_workspace
()
def
init
(
self
,
sparse_slots
,
dense_slots
,
padding
=
0
):
from
operator
import
mul
self
.
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
self
.
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
self
.
sparse_slots
=
[]
if
sparse_slots
.
strip
()
!=
"#"
and
sparse_slots
.
strip
(
)
!=
"?"
and
sparse_slots
.
strip
()
!=
""
:
self
.
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
self
.
dense_slots
=
[]
if
dense_slots
.
strip
()
!=
"#"
and
dense_slots
.
strip
(
)
!=
"?"
and
dense_slots
.
strip
()
!=
""
:
self
.
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
self
.
dense_slots_shape
=
[
reduce
(
mul
,
[
int
(
j
)
for
j
in
i
.
split
(
":"
)[
1
].
strip
(
"[]"
).
split
(
","
)])
...
...
core/trainers/single_infer.py
0 → 100755
浏览文件 @
d889e3ec
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleInfer
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
==
""
:
sparse_slots
=
"?"
if
dense_slots
==
""
:
dense_slots
=
"?"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"?"
),
dense_slots
.
replace
(
" "
,
"?"
),
str
(
padding
))
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"phase"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
_infer_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
if
type_name
==
"DataLoader"
:
return
None
else
:
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_infer_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
True
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_infer_data_var
,
True
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
4
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
save
(
j
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
infer_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
fetch_vars
=
[]
fetch_alias
=
[]
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
def
load
(
self
,
is_fleet
=
False
):
name
=
"runner."
+
self
.
_runner_name
+
"."
dirname
=
envs
.
get_global_env
(
name
+
"init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"single_infer going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
load_persistables
(
self
.
_exe
,
dirname
)
def
save
(
self
,
epoch_id
,
is_fleet
=
False
):
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
if
epoch_id
==
-
1
:
return
False
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_inference_model
(
self
.
_exe
,
dirname
,
feed_varnames
,
fetch_vars
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
save_persistables
(
self
.
_exe
,
dirname
)
save_persistables
()
save_inference_model
()
core/trainers/single_trainer.py
浏览文件 @
d889e3ec
...
...
@@ -19,11 +19,13 @@ from __future__ import print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
...
...
@@ -31,105 +33,323 @@ logger.setLevel(logging.INFO)
class
SingleTrainer
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
if
sparse_slots
==
""
:
sparse_slots
=
"?"
if
dense_slots
==
""
:
dense_slots
=
"?"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"?"
),
dense_slots
.
replace
(
" "
,
"?"
),
str
(
padding
))
self
.
regist_context_processor
(
'infer_pass'
,
self
.
infer
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"phase"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
init
(
self
,
context
):
self
.
model
.
train_net
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
.
minimize
((
self
.
model
.
get_avg_cost
()))
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
evaluate_only
=
envs
.
get_global_env
(
'evaluate_only'
,
False
,
namespace
=
'evaluate'
)
if
evaluate_only
:
context
[
'status'
]
=
'infer_pass'
if
type_name
==
"DataLoader"
:
return
None
else
:
context
[
'status'
]
=
'startup_pass'
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
False
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
for
model_dict
in
self
.
_env
[
"phase"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
dataloader_train
(
self
,
context
):
reader
=
self
.
_get_dataloader
(
"TRAIN"
)
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
def
executor_train
(
self
,
context
):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
4
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
save
(
j
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
self
.
model
.
get_avg_cost
().
name
)
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
self
.
model
.
get_metrics
().
items
():
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
for
epoch
in
range
(
epochs
):
reader
.
start
()
batch_id
=
0
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
=
[
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
self
.
fetch_period
==
0
and
batch_id
!=
0
:
if
batch_id
%
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
self
.
save
(
epoch
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
def
dataset_train
(
self
,
context
):
dataset
=
self
.
_get_dataset
(
"TRAIN"
)
ins
=
self
.
_get_dataset_ins
()
def
load
(
self
,
is_fleet
=
False
):
dirname
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
load_persistables
(
self
.
_exe
,
dirname
)
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
begin_time
=
time
.
time
()
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
save
(
self
,
epoch_id
,
is_fleet
=
False
):
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
if
epoch_id
==
-
1
:
return
False
def
terminal
(
self
,
context
):
for
model
in
self
.
increment_models
:
print
(
"epoch :{}, dir: {}"
.
format
(
model
[
0
],
model
[
1
]))
context
[
'is_exit'
]
=
True
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
[])
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
[])
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
or
fetch_varnames
==
""
or
\
len
(
feed_varnames
)
==
0
or
len
(
fetch_varnames
)
==
0
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_inference_model
(
self
.
_exe
,
dirname
,
feed_varnames
,
fetch_vars
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
save_persistables
(
self
.
_exe
,
dirname
)
save_persistables
()
save_inference_model
()
core/trainers/transpiler_trainer.py
浏览文件 @
d889e3ec
...
...
@@ -119,6 +119,10 @@ class TranspileTrainer(Trainer):
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
state
,
self
.
_config_yaml
)
else
:
if
sparse_slots
is
None
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
"padding"
,
0
,
namespace
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
namespace
,
\
...
...
core/utils/dataloader_instance.py
浏览文件 @
d889e3ec
...
...
@@ -14,13 +14,93 @@
from
__future__
import
print_function
import
os
from
paddlerec.core.utils.envs
import
lazy_instance_by_fliename
from
paddlerec.core.utils.envs
import
get_global_env
from
paddlerec.core.utils.envs
import
get_runtime_environ
from
paddlerec.core.reader
import
SlotReader
def
dataloader_by_name
(
readerclass
,
dataset_name
,
yaml_file
):
reader_class
=
lazy_instance_by_fliename
(
readerclass
,
"TrainReader"
)
name
=
"dataset."
+
dataset_name
+
"."
data_path
=
get_global_env
(
name
+
"data_path"
)
if
data_path
.
startswith
(
"paddlerec::"
):
package_base
=
get_runtime_environ
(
"PACKAGE_BASE"
)
assert
package_base
is
not
None
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
reader
=
reader_class
(
yaml_file
)
reader
.
init
()
def
gen_reader
():
for
file
in
files
:
with
open
(
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
line
.
rstrip
(
'
\n
'
)
iter
=
reader
.
generate_sample
(
line
)
for
parsed_line
in
iter
():
if
parsed_line
is
None
:
continue
else
:
values
=
[]
for
pased
in
parsed_line
:
values
.
append
(
pased
[
1
])
yield
values
def
gen_batch_reader
():
return
reader
.
generate_batch_from_trainfiles
(
files
)
if
hasattr
(
reader
,
'generate_batch_from_trainfiles'
):
return
gen_batch_reader
()
return
gen_reader
def
slotdataloader_by_name
(
readerclass
,
dataset_name
,
yaml_file
):
name
=
"dataset."
+
dataset_name
+
"."
reader_name
=
"SlotReader"
data_path
=
get_global_env
(
name
+
"data_path"
)
if
data_path
.
startswith
(
"paddlerec::"
):
package_base
=
get_runtime_environ
(
"PACKAGE_BASE"
)
assert
package_base
is
not
None
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
sparse
=
get_global_env
(
name
+
"sparse_slots"
,
"#"
)
if
sparse
==
""
:
sparse
=
"#"
dense
=
get_global_env
(
name
+
"dense_slots"
,
"#"
)
if
dense
==
""
:
dense
=
"#"
padding
=
get_global_env
(
name
+
"padding"
,
0
)
reader
=
SlotReader
(
yaml_file
)
reader
.
init
(
sparse
,
dense
,
int
(
padding
))
def
gen_reader
():
for
file
in
files
:
with
open
(
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
line
.
rstrip
(
'
\n
'
)
iter
=
reader
.
generate_sample
(
line
)
for
parsed_line
in
iter
():
if
parsed_line
is
None
:
continue
else
:
values
=
[]
for
pased
in
parsed_line
:
values
.
append
(
pased
[
1
])
yield
values
def
gen_batch_reader
():
return
reader
.
generate_batch_from_trainfiles
(
files
)
if
hasattr
(
reader
,
'generate_batch_from_trainfiles'
):
return
gen_batch_reader
()
return
gen_reader
def
dataloader
(
readerclass
,
train
,
yaml_file
):
if
train
==
"TRAIN"
:
reader_name
=
"TrainReader"
...
...
@@ -82,8 +162,12 @@ def slotdataloader(readerclass, train, yaml_file):
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
sparse
=
get_global_env
(
"sparse_slots"
,
None
,
namespace
)
dense
=
get_global_env
(
"dense_slots"
,
None
,
namespace
)
sparse
=
get_global_env
(
"sparse_slots"
,
"#"
,
namespace
)
if
sparse
==
""
:
sparse
=
"#"
dense
=
get_global_env
(
"dense_slots"
,
"#"
,
namespace
)
if
dense
==
""
:
dense
=
"#"
padding
=
get_global_env
(
"padding"
,
0
,
namespace
)
reader
=
SlotReader
(
yaml_file
)
reader
.
init
(
sparse
,
dense
,
int
(
padding
))
...
...
core/utils/dataset_instance.py
浏览文件 @
d889e3ec
...
...
@@ -32,8 +32,8 @@ elif sys.argv[2].upper() == "EVALUATE":
else
:
reader_name
=
"SlotReader"
namespace
=
sys
.
argv
[
4
]
sparse_slots
=
sys
.
argv
[
5
].
replace
(
"
#
"
,
" "
)
dense_slots
=
sys
.
argv
[
6
].
replace
(
"
#
"
,
" "
)
sparse_slots
=
sys
.
argv
[
5
].
replace
(
"
?
"
,
" "
)
dense_slots
=
sys
.
argv
[
6
].
replace
(
"
?
"
,
" "
)
padding
=
int
(
sys
.
argv
[
7
])
yaml_abs_path
=
sys
.
argv
[
3
]
...
...
core/utils/envs.py
浏览文件 @
d889e3ec
...
...
@@ -68,12 +68,20 @@ def set_global_envs(envs):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"phase"
or
k
==
"runner"
)
and
isinstance
(
v
,
list
):
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
nests
.
append
(
i
[
"name"
])
fatten_env_namespace
(
nests
,
i
)
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
global_envs
[
global_k
]
=
v
for
k
,
v
in
envs
.
items
():
fatten_env_namespace
([
k
],
v
)
fatten_env_namespace
([],
envs
)
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
...
...
@@ -106,7 +114,7 @@ def windows_path_converter(path):
def
update_workspace
():
workspace
=
global_envs
.
get
(
"
train.workspace"
,
None
)
workspace
=
global_envs
.
get
(
"
workspace"
)
if
not
workspace
:
return
workspace
=
path_adapter
(
workspace
)
...
...
doc/yaml.md
0 → 100644
浏览文件 @
d889e3ec
```
# 全局配置
debug: false
workspace: "."
# 用户可以配多个dataset,exector里不同阶段可以用不同的dataset
dataset:
- name: sample_1
type: DataLoader #或者QueueDataset
batch_size: 5
data_path: "{workspace}/data/train"
# 用户自定义reader
data_converter: "{workspace}/rsc15_reader.py"
- name: sample_2
type: QueueDataset #或者DataLoader
batch_size: 5
data_path: "{workspace}/data/train"
# 用户可以配置sparse_slots和dense_slots,无需再定义data_converter
sparse_slots: "click ins_weight 6001 6002 6003 6005 6006 6007 6008 6009"
dense_slots: "readlist:9"
#示例一,用户自定义参数,用于组网配置
hyper_parameters:
#优化器
optimizer:
class: Adam
learning_rate: 0.001
strategy: "{workspace}/conf/config_fleet.py"
# 用户自定义配置
vocab_size: 1000
hid_size: 100
my_key1: 233
my_key2: 0.1
mode: runner1
runner:
- name: runner1 # 示例一,train
trainer_class: single_train
epochs: 10
device: cpu
init_model_path: ""
save_checkpoint_interval: 2
save_inference_interval: 4
# 下面是保存模型路径配置
save_checkpoint_path: "xxxx"
save_inference_path: "xxxx"
- name: runner2 # 示例二,infer
trainer_class: single_train
epochs: 1
device: cpu
init_model_path: "afs:/xxx/xxx"
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: sample_1
thread_num: 1
```
models/rank/dnn/config.yaml
浏览文件 @
d889e3ec
...
...
@@ -12,39 +12,72 @@
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
epochs
:
10
engine
:
single
workspace
:
"
paddlerec.models.rank.dnn"
# workspace
workspace
:
"
paddlerec.models.rank.dnn"
trainer
:
# for cluster training
strategy
:
"
async"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
-
name
:
dataset_infer
# name
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
reader
:
batch_size
:
2
train_data_path
:
"
{workspace}/data/sample_data/train"
reader_debug_mode
:
False
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
# hyper parameters of user-defined network
hyper_parameters
:
# optimizer config
optimizer
:
class
:
Adam
learning_rate
:
0.001
strategy
:
async
# user-defined <key, value> pairs
sparse_inputs_slots
:
27
sparse_feature_number
:
1000001
sparse_feature_dim
:
9
dense_input_dim
:
13
fc_sizes
:
[
512
,
256
,
128
,
32
]
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
sparse_inputs_slots
:
27
sparse_feature_number
:
1000001
sparse_feature_dim
:
9
dense_input_dim
:
13
fc_sizes
:
[
512
,
256
,
128
,
32
]
learning_rate
:
0.001
optimizer
:
adam
# select runner by name
mode
:
runner1
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
runner1
class
:
single_train
# num of epochs
epochs
:
10
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
10
-
name
:
runner2
class
:
single_infer
# num of epochs
epochs
:
10
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment/0"
# load model path
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/rank/dnn/model.py
浏览文件 @
d889e3ec
...
...
@@ -28,15 +28,15 @@ class Model(ModelBase):
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
)
==
"CtrTrainer"
else
False
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
"hyper_parameters.sparse_feature_number"
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
"hyper_parameters.sparse_feature_dim"
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
"hyper_parameters.learning_rate"
)
def
net
(
self
,
input
,
is_infer
=
False
):
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
self
.
dense_input
=
self
.
_dense_data_var
[
0
]
self
.
dense_input
=
[]
#
self._dense_data_var[0]
self
.
label_input
=
self
.
_sparse_data_var
[
0
]
def
embedding_layer
(
input
):
...
...
@@ -52,12 +52,11 @@ class Model(ModelBase):
return
emb_sum
sparse_embed_seq
=
list
(
map
(
embedding_layer
,
self
.
sparse_inputs
))
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
self
.
dense_input
],
axis
=
1
)
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
,
axis
=
1
)
#
sparse_embed_seq + [self.dense_input], axis=1)
fcs
=
[
concated
]
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
)
for
size
in
hidden_layers
:
output
=
fluid
.
layers
.
fc
(
...
...
@@ -78,16 +77,21 @@ class Model(ModelBase):
self
.
predict
=
predict
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc
self
.
_infer_results
[
"BATCH_AUC"
]
=
batch_auc
return
self
.
_metrics
[
"AUC"
]
=
auc
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
def
optimizer
(
self
):
optimizer
=
fluid
.
optimizer
.
Adam
(
self
.
learning_rate
,
lazy_mode
=
True
)
...
...
run.py
浏览文件 @
d889e3ec
...
...
@@ -18,7 +18,7 @@ import subprocess
import
argparse
import
tempfile
import
yaml
import
copy
from
paddlerec.core.factory
import
TrainerFactory
from
paddlerec.core.utils
import
envs
from
paddlerec.core.utils
import
util
...
...
@@ -27,8 +27,8 @@ engines = {}
device
=
[
"CPU"
,
"GPU"
]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
engine_choices
=
[
"SINGLE
"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER
"
,
"TDM_
CLUST
ER"
"SINGLE
_TRAIN"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE
"
,
"TDM_
LOCAL_CLUSTER"
,
"TDM_CLUSTER"
,
"SINGLE_INF
ER"
]
custom_model
=
[
'TDM'
]
model_name
=
""
...
...
@@ -38,35 +38,73 @@ def engine_registry():
engines
[
"TRANSPILER"
]
=
{}
engines
[
"PSLIB"
]
=
{}
engines
[
"TRANSPILER"
][
"SINGLE"
]
=
single_engine
engines
[
"TRANSPILER"
][
"SINGLE_TRAIN"
]
=
single_train_engine
engines
[
"TRANSPILER"
][
"SINGLE_INFER"
]
=
single_infer_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
def
get_inters_from_yaml
(
file
,
filter
):
def
get_inters_from_yaml
(
file
,
filter
s
):
with
open
(
file
,
'r'
)
as
rb
:
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
flattens
=
envs
.
flatten_environs
(
_envs
)
inters
=
{}
for
k
,
v
in
flattens
.
items
():
if
k
.
startswith
(
filter
):
inters
[
k
]
=
v
for
f
in
filters
:
if
k
.
startswith
(
f
):
inters
[
k
]
=
v
return
inters
def
get_all_inters_from_yaml
(
file
,
filters
):
with
open
(
file
,
'r'
)
as
rb
:
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
all_flattens
=
{}
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
for
k
,
v
in
local_envs
.
items
():
if
isinstance
(
v
,
dict
):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"phase"
or
k
==
"runner"
)
and
isinstance
(
v
,
list
):
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
nests
.
append
(
i
[
"name"
])
fatten_env_namespace
(
nests
,
i
)
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
all_flattens
[
global_k
]
=
v
fatten_env_namespace
([],
_envs
)
ret
=
{}
for
k
,
v
in
all_flattens
.
items
():
for
f
in
filters
:
if
k
.
startswith
(
f
):
ret
[
k
]
=
v
return
ret
def
get_engine
(
args
):
transpiler
=
get_transpiler
()
run_extras
=
get_inters_from_yaml
(
args
.
model
,
"train."
)
engine
=
run_extras
.
get
(
"train.engine"
,
"single"
)
with
open
(
args
.
model
,
'r'
)
as
rb
:
envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
run_extras
=
get_all_inters_from_yaml
(
args
.
model
,
[
"train."
,
"runner."
])
engine
=
run_extras
.
get
(
"train.engine"
,
None
)
if
engine
is
None
:
engine
=
run_extras
.
get
(
"runner."
+
envs
[
"mode"
]
+
".class"
,
None
)
if
engine
is
None
:
engine
=
"single_train"
engine
=
engine
.
upper
()
if
engine
not
in
engine_choices
:
raise
ValueError
(
"train.engin can not be chosen in {}"
.
format
(
engine_choices
))
...
...
@@ -117,15 +155,27 @@ def get_trainer_prefix(args):
return
""
def
single_engine
(
args
):
def
single_
train_
engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleTrainer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single"
single_envs
[
"train.trainer.engine"
]
=
"single
_train
"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
single_infer_engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleInfer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single_infer"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录