Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
d21f279a
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d21f279a
编写于
8月 19, 2019
作者:
R
rensilin
提交者:
iCode
8月 19, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge changes Iecc2518d,I69ec0b9d,Ie5622d75
* changes: loss_function(*output) fix update_create_programs
上级
edad1a7f
a96cefd6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
184 addition
and
97 deletion
+184
-97
paddle/fluid/train/custom_trainer/feed/scripts/create_programs.py
...luid/train/custom_trainer/feed/scripts/create_programs.py
+119
-66
paddle/fluid/train/custom_trainer/feed/scripts/example.py
paddle/fluid/train/custom_trainer/feed/scripts/example.py
+25
-7
paddle/fluid/train/custom_trainer/feed/unit_test/test_create_programs.cc
...ain/custom_trainer/feed/unit_test/test_create_programs.cc
+39
-23
paddle/fluid/train/custom_trainer/feed/unit_test/test_executor.cc
...luid/train/custom_trainer/feed/unit_test/test_executor.cc
+1
-1
未找到文件。
paddle/fluid/train/custom_trainer/feed/scripts/create_programs.py
浏览文件 @
d21f279a
...
@@ -12,87 +12,140 @@ def print_help(this_name):
...
@@ -12,87 +12,140 @@ def print_help(this_name):
"""Print help
"""Print help
"""
"""
dirname
=
os
.
path
.
dirname
(
this_name
)
dirname
=
os
.
path
.
dirname
(
this_name
)
print
(
"Usage: {} <network building filename> [model_dir]
\n
"
.
format
(
this_name
))
print
(
'Usage: {} <network building filename> [model_dir]
\n
'
.
format
(
this_name
))
print
(
" example: {} {}"
.
format
(
this_name
,
os
.
path
.
join
(
dirname
,
'example.py'
)))
print
(
' example: {} {}'
.
format
(
this_name
,
os
.
path
.
join
(
dirname
,
'example.py'
)))
class
ModelBuilder
:
"""
Attributes:
_save_path: Save path of programs
def _inference():
Build inference network(without loss and optimizer)
**This function is declared in the network_desc_path file, and will be set in initialize()**
Returns:
list<Variable>: inputs
and
list<Variable>: outputs
pass
def _loss_function(*outputs):
**This function is declared in the network_desc_path file, and will be set in initialize()**
Args:
*outputs: the second result of inference()
Returns:
Variable: loss
and
list<Variable>: labels
pass
"""
def
initialize
(
self
,
network_desc_path
,
save_path
=
None
):
"""compile the network description module
Args:
network_desc_path: path
save_path: model save path, default is ./model/<network_desc_path without .py>/
Returns:
bool: True if succeed else False
"""
if
not
isinstance
(
network_desc_path
,
str
):
print
(
'network_desc_path must be str'
)
return
False
if
not
network_desc_path
.
endswith
(
'.py'
):
print
(
'network_desc_path must be end with .py'
)
return
False
if
not
os
.
path
.
exists
(
network_desc_path
):
print
(
'file not exists:'
,
network_desc_path
)
return
False
scope
=
dict
()
with
open
(
network_desc_path
,
'r'
)
as
f
:
code
=
f
.
read
()
compiled
=
compile
(
code
,
network_desc_path
,
'exec'
)
exec
(
compiled
,
scope
)
if
not
'inference'
in
scope
:
print
(
'inference not defined'
)
return
False
if
not
'loss_function'
in
scope
:
print
(
'loss_function not defined'
)
return
False
if
save_path
is
None
:
# example /a/b/c.d -> ./model/c
save_path
=
os
.
path
.
join
(
'./model'
,
os
.
path
.
splitext
(
os
.
path
.
split
(
network_desc_path
)[
1
])[
0
])
print
(
'save in the default path:'
,
save_path
)
self
.
_save_path
=
save_path
self
.
_inference
=
scope
[
'inference'
]
self
.
_loss_function
=
scope
[
'loss_function'
]
return
True
def
build_and_save
(
self
):
"""Build programs and save to _save_path
"""
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
inputs
,
outputs
=
self
.
_inference
()
test_program
=
main_program
.
clone
(
for_test
=
True
)
loss
,
labels
=
self
.
_loss_function
(
*
outputs
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1.0
)
params_grads
=
optimizer
.
backward
(
loss
)
if
not
os
.
path
.
exists
(
self
.
_save_path
):
os
.
makedirs
(
self
.
_save_path
)
programs
=
{
'startup_program'
:
startup_program
,
'main_program'
:
main_program
,
'test_program'
:
test_program
,
}
for
name
,
program
in
programs
.
items
():
with
open
(
os
.
path
.
join
(
self
.
_save_path
,
name
),
'w'
)
as
f
:
f
.
write
(
program
.
desc
.
serialize_to_string
())
model_desc_path
=
os
.
path
.
join
(
self
.
_save_path
,
'model.yaml'
)
model_desc
=
{
'inputs'
:
[{
"name"
:
var
.
name
,
"shape"
:
var
.
shape
}
for
var
in
inputs
],
'outputs'
:
[{
"name"
:
var
.
name
,
"shape"
:
var
.
shape
}
for
var
in
outputs
],
'labels'
:
[{
"name"
:
var
.
name
,
"shape"
:
var
.
shape
}
for
var
in
labels
],
'loss'
:
loss
.
name
,
}
with
open
(
model_desc_path
,
'w'
)
as
f
:
yaml
.
safe_dump
(
model_desc
,
f
,
encoding
=
'utf-8'
,
allow_unicode
=
True
)
def
inference_warpper
(
filename
):
"""Build inference network(without loss and optimizer)
Args:
filename: path of file which defined real inference function
Returns:
list<Variable>: inputs
and
list<Variable>: outputs
"""
with
open
(
filename
,
'r'
)
as
f
:
code
=
f
.
read
()
compiled
=
compile
(
code
,
filename
,
'exec'
)
scope
=
dict
()
exec
(
compiled
,
scope
)
return
scope
[
'inference'
]()
def
main
(
argv
):
def
main
(
argv
):
"""Create programs
"""Create programs
Args:
Args:
argv: arg list, length should be 2
argv: arg list, length should be 2
"""
"""
if
len
(
argv
)
<
2
or
not
os
.
path
.
exists
(
argv
[
1
])
:
if
len
(
argv
)
<
2
:
print_help
(
argv
[
0
])
print_help
(
argv
[
0
])
exit
(
1
)
exit
(
1
)
network_
build_file
=
argv
[
1
]
network_
desc_path
=
argv
[
1
]
if
len
(
argv
)
>
2
:
if
len
(
argv
)
>
2
:
model_dir
=
argv
[
2
]
save_path
=
argv
[
2
]
else
:
else
:
model_dir
=
'./model'
save_path
=
None
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
inputs
,
outputs
=
inference_warpper
(
network_build_file
)
test_program
=
main_program
.
clone
(
for_test
=
True
)
labels
=
list
()
losses
=
list
()
for
output
in
outputs
:
label
=
fluid
.
layers
.
data
(
name
=
'label_'
+
output
.
name
,
shape
=
output
.
shape
,
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
output
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
,
name
=
'loss_'
+
output
.
name
)
labels
.
append
(
label
)
losses
.
append
(
loss
)
loss_all
=
fluid
.
layers
.
sum
(
losses
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1.0
)
params_grads
=
optimizer
.
backward
(
loss_all
)
if
not
os
.
path
.
exists
(
model_dir
):
os
.
mkdir
(
model_dir
)
programs
=
{
'startup_program'
:
startup_program
,
'main_program'
:
main_program
,
'test_program'
:
test_program
,
}
for
save_path
,
program
in
programs
.
items
():
with
open
(
os
.
path
.
join
(
model_dir
,
save_path
),
'w'
)
as
f
:
f
.
write
(
program
.
desc
.
serialize_to_string
())
model_desc_path
=
os
.
path
.
join
(
model_dir
,
'model.yaml'
)
model_desc
=
{
'inputs'
:
[{
"name"
:
var
.
name
,
"shape"
:
var
.
shape
}
for
var
in
inputs
],
'outputs'
:
[{
"name"
:
var
.
name
,
"shape"
:
var
.
shape
,
"label_name"
:
label
.
name
,
"loss_name"
:
loss
.
name
}
for
var
,
label
,
loss
in
zip
(
outputs
,
labels
,
losses
)],
'loss_all'
:
loss_all
.
name
,
}
with
open
(
model_desc_path
,
'w'
)
as
f
:
yaml
.
safe_dump
(
model_desc
,
f
,
encoding
=
'utf-8'
,
allow_unicode
=
True
)
builder
=
ModelBuilder
()
if
not
builder
.
initialize
(
network_desc_path
,
save_path
):
print_help
(
argv
[
0
])
exit
(
1
)
builder
.
build_and_save
()
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
(
sys
.
argv
)
main
(
sys
.
argv
)
paddle/fluid/train/custom_trainer/feed/scripts/example.py
浏览文件 @
d21f279a
...
@@ -21,13 +21,31 @@ def inference():
...
@@ -21,13 +21,31 @@ def inference():
cvm_input
=
fluid
.
layers
.
data
(
name
=
'cvm_input'
,
shape
=
[
4488
],
dtype
=
'float32'
)
cvm_input
=
fluid
.
layers
.
data
(
name
=
'cvm_input'
,
shape
=
[
4488
],
dtype
=
'float32'
)
net
=
cvm_input
net
=
cvm_input
net
=
fluid
.
layers
.
fc
(
net
,
512
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
512
,
act
=
'relu'
,
name
=
'fc_1'
)
net
=
fluid
.
layers
.
fc
(
net
,
256
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
256
,
act
=
'relu'
,
name
=
'fc_2'
)
net
=
fluid
.
layers
.
fc
(
net
,
256
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
256
,
act
=
'relu'
,
name
=
'fc_3'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
,
name
=
'fc_4'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
,
name
=
'fc_5'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
,
name
=
'fc_6'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
)
net
=
fluid
.
layers
.
fc
(
net
,
128
,
act
=
'relu'
,
name
=
'fc_7'
)
ctr_output
=
fluid
.
layers
.
fc
(
net
,
1
,
act
=
'sigmoid'
,
name
=
'ctr'
)
ctr_output
=
fluid
.
layers
.
fc
(
net
,
1
,
act
=
'sigmoid'
,
name
=
'ctr'
)
return
[
cvm_input
],
[
ctr_output
]
return
[
cvm_input
],
[
ctr_output
]
def
loss_function
(
ctr_output
):
"""
Args:
*outputs: the second result of inference()
Returns:
Variable: loss
and
list<Variable>: labels
"""
# TODO: calc loss here
label
=
fluid
.
layers
.
data
(
name
=
'label_ctr'
,
shape
=
ctr_output
.
shape
,
dtype
=
'float32'
)
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
ctr_output
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
,
name
=
'loss_ctr'
)
return
loss
,
[
label
]
paddle/fluid/train/custom_trainer/feed/unit_test/test_create_programs.cc
浏览文件 @
d21f279a
#include <iostream>
#include <iostream>
#include <fstream>
#include <fstream>
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <cstdlib>
#include <cmath>
#include "paddle/fluid/train/custom_trainer/feed/executor/executor.h"
#include "paddle/fluid/train/custom_trainer/feed/executor/executor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/tensor_util.h"
...
@@ -50,6 +52,11 @@ public:
...
@@ -50,6 +52,11 @@ public:
context_ptr
=
nullptr
;
context_ptr
=
nullptr
;
}
}
float
random
(
float
min_x
=
0.0
,
float
max_x
=
1.0
)
{
float
r
=
static_cast
<
float
>
(
rand
())
/
RAND_MAX
;
return
min_x
+
(
max_x
-
min_x
)
*
r
;
}
std
::
shared_ptr
<
TrainerContext
>
context_ptr
;
std
::
shared_ptr
<
TrainerContext
>
context_ptr
;
};
};
...
@@ -60,38 +67,49 @@ TEST_F(CreateProgramsTest, example_network) {
...
@@ -60,38 +67,49 @@ TEST_F(CreateProgramsTest, example_network) {
auto
config
=
YAML
::
Load
(
string
::
format_string
(
"{thread_num: 2, startup_program: %s, main_program: %s}"
,
startup_program_path
,
main_program_path
));
auto
config
=
YAML
::
Load
(
string
::
format_string
(
"{thread_num: 2, startup_program: %s, main_program: %s}"
,
startup_program_path
,
main_program_path
));
auto
model_desc
=
YAML
::
LoadFile
(
model_desc_path
);
auto
model_desc
=
YAML
::
LoadFile
(
model_desc_path
);
ASSERT_EQ
(
0
,
executor
->
initialize
(
config
,
context_ptr
));
ASSERT_EQ
(
0
,
executor
->
initialize
(
config
,
context_ptr
));
std
::
string
input_name
=
"cvm_input"
;
std
::
string
input_name
=
"cvm_input"
;
std
::
string
loss_name
=
"loss_ctr"
;
std
::
string
label_name
=
"label_ctr"
;
// loss
ASSERT_TRUE
(
model_desc
[
"loss"
]);
ASSERT_EQ
(
loss_name
,
model_desc
[
"loss"
].
as
<
std
::
string
>
());
// input
ASSERT_TRUE
(
model_desc
[
"inputs"
]);
ASSERT_TRUE
(
model_desc
[
"inputs"
]);
ASSERT_EQ
(
1
,
model_desc
[
"inputs"
].
size
());
ASSERT_EQ
(
1
,
model_desc
[
"inputs"
].
size
());
ASSERT_TRUE
(
model_desc
[
"inputs"
][
0
][
"name"
]);
ASSERT_TRUE
(
model_desc
[
"inputs"
][
0
][
"name"
]);
ASSERT_TRUE
(
model_desc
[
"inputs"
][
0
][
"shape"
]);
ASSERT_TRUE
(
model_desc
[
"inputs"
][
0
][
"shape"
]);
ASSERT_EQ
(
input_name
,
model_desc
[
"inputs"
][
0
][
"name"
].
as
<
std
::
string
>
());
ASSERT_EQ
(
input_name
,
model_desc
[
"inputs"
][
0
][
"name"
].
as
<
std
::
string
>
());
std
::
vector
<
int
>
input_shape
=
model_desc
[
"inputs"
][
0
][
"shape"
].
as
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
());
auto
input_shape
=
model_desc
[
"inputs"
][
0
][
"shape"
].
as
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
());
ASSERT_EQ
(
2
,
input_shape
.
size
());
ASSERT_EQ
(
2
,
input_shape
.
size
());
ASSERT_EQ
(
-
1
,
input_shape
[
0
]);
ASSERT_EQ
(
-
1
,
input_shape
[
0
]);
ASSERT_EQ
(
4488
,
input_shape
[
1
]);
ASSERT_EQ
(
4488
,
input_shape
[
1
]);
ASSERT_TRUE
(
model_desc
[
"loss_all"
]);
// label
auto
loss_all_name
=
model_desc
[
"loss_all"
].
as
<
std
::
string
>
();
ASSERT_TRUE
(
model_desc
[
"labels"
]);
ASSERT_EQ
(
1
,
model_desc
[
"labels"
].
size
());
ASSERT_TRUE
(
model_desc
[
"labels"
][
0
][
"name"
]);
ASSERT_TRUE
(
model_desc
[
"labels"
][
0
][
"shape"
]);
ASSERT_EQ
(
label_name
,
model_desc
[
"labels"
][
0
][
"name"
].
as
<
std
::
string
>
());
auto
label_shape
=
model_desc
[
"labels"
][
0
][
"shape"
].
as
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
());
ASSERT_EQ
(
2
,
label_shape
.
size
());
ASSERT_EQ
(
-
1
,
label_shape
[
0
]);
ASSERT_EQ
(
1
,
label_shape
[
1
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
]);
ASSERT_EQ
(
1
,
model_desc
[
"outputs"
].
size
());
ASSERT_EQ
(
1
,
model_desc
[
"outputs"
].
size
());
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"name"
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"name"
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"shape"
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"shape"
]);
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"label_name"
]);
auto
output_name
=
model_desc
[
"outputs"
][
0
][
"name"
].
as
<
std
::
string
>
();
ASSERT_TRUE
(
model_desc
[
"outputs"
][
0
][
"loss_name"
]);
auto
output_shape
=
model_desc
[
"outputs"
][
0
][
"shape"
].
as
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
());
auto
ctr_output_label_name
=
model_desc
[
"outputs"
][
0
][
"label_name"
].
as
<
std
::
string
>
();
auto
ctr_output_loss_name
=
model_desc
[
"outputs"
][
0
][
"loss_name"
].
as
<
std
::
string
>
();
auto
ctr_output_name
=
model_desc
[
"outputs"
][
0
][
"name"
].
as
<
std
::
string
>
();
std
::
vector
<
int
>
output_shape
=
model_desc
[
"outputs"
][
0
][
"shape"
].
as
<
std
::
vector
<
int
>>
(
std
::
vector
<
int
>
());
ASSERT_EQ
(
2
,
output_shape
.
size
());
ASSERT_EQ
(
2
,
output_shape
.
size
());
ASSERT_EQ
(
-
1
,
output_shape
[
0
]);
ASSERT_EQ
(
-
1
,
output_shape
[
0
]);
ASSERT_EQ
(
1
,
output_shape
[
1
]);
ASSERT_EQ
(
1
,
output_shape
[
1
]);
auto
input_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
input_name
);
auto
input_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
input_name
);
auto
label_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
ctr_output_
label_name
);
auto
label_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
label_name
);
ASSERT_NE
(
nullptr
,
input_var
);
ASSERT_NE
(
nullptr
,
input_var
);
ASSERT_NE
(
nullptr
,
label_var
);
ASSERT_NE
(
nullptr
,
label_var
);
...
@@ -99,28 +117,26 @@ TEST_F(CreateProgramsTest, example_network) {
...
@@ -99,28 +117,26 @@ TEST_F(CreateProgramsTest, example_network) {
auto
input_data
=
input_var
->
mutable_data
<
float
>
(
context_ptr
->
cpu_place
);
auto
input_data
=
input_var
->
mutable_data
<
float
>
(
context_ptr
->
cpu_place
);
ASSERT_NE
(
nullptr
,
input_data
);
ASSERT_NE
(
nullptr
,
input_data
);
for
(
int
i
=
0
;
i
<
input_shape
[
1
];
++
i
)
{
for
(
int
i
=
0
;
i
<
input_shape
[
1
];
++
i
)
{
input_data
[
i
]
=
0.1
;
input_data
[
i
]
=
random
()
;
}
}
label_var
->
Resize
({
1
,
1
});
label_var
->
Resize
({
1
,
1
});
auto
label_data
=
label_var
->
mutable_data
<
float
>
(
context_ptr
->
cpu_place
);
auto
label_data
=
label_var
->
mutable_data
<
float
>
(
context_ptr
->
cpu_place
);
ASSERT_NE
(
nullptr
,
label_data
);
ASSERT_NE
(
nullptr
,
label_data
);
label_data
[
0
]
=
0.5
;
label_data
[
0
]
=
random
()
;
ASSERT_EQ
(
0
,
executor
->
run
());
ASSERT_EQ
(
0
,
executor
->
run
());
auto
loss_var
=
executor
->
var
<::
paddle
::
framework
::
LoDTensor
>
(
ctr_output_
loss_name
);
auto
loss_var
=
executor
->
var
<::
paddle
::
framework
::
LoDTensor
>
(
loss_name
);
auto
loss
=
loss_var
.
data
<
float
>
()[
0
];
auto
loss
=
loss_var
.
data
<
float
>
()[
0
];
auto
loss_all_var
=
executor
->
var
<::
paddle
::
framework
::
LoDTensor
>
(
loss_all_name
);
auto
output_var
=
executor
->
var
<::
paddle
::
framework
::
LoDTensor
>
(
output_name
);
auto
loss_all
=
loss_all_var
.
data
<
float
>
()[
0
];
auto
output
=
output_var
.
data
<
float
>
()[
0
];
auto
ctr_output_var
=
executor
->
var
<::
paddle
::
framework
::
LoDTensor
>
(
ctr_output_name
);
auto
ctr_output
=
ctr_output_var
.
data
<
float
>
()[
0
];
std
::
cout
<<
"loss: "
<<
loss
<<
std
::
endl
;
VLOG
(
3
)
<<
"loss: "
<<
loss
<<
std
::
endl
;
std
::
cout
<<
"ctr_output: "
<<
ctr_output
<<
std
::
endl
;
VLOG
(
3
)
<<
"label: "
<<
label_data
[
0
]
<<
std
::
endl
;
ASSERT_NEAR
(
loss
,
loss_all
,
1e-9
);
VLOG
(
3
)
<<
"output: "
<<
output
<<
std
::
endl
;
ASSERT_NEAR
(
loss
,
pow
(
output
-
label_data
[
0
],
2
),
1e-8
);
}
}
}
// namespace feed
}
// namespace feed
...
...
paddle/fluid/train/custom_trainer/feed/unit_test/test_executor.cc
浏览文件 @
d21f279a
...
@@ -91,7 +91,7 @@ TEST_F(SimpleExecutorTest, run) {
...
@@ -91,7 +91,7 @@ TEST_F(SimpleExecutorTest, run) {
auto
config
=
YAML
::
Load
(
string
::
format_string
(
"{thread_num: 2, startup_program: %s, main_program: %s}"
,
startup_program_path
,
main_program_path
));
auto
config
=
YAML
::
Load
(
string
::
format_string
(
"{thread_num: 2, startup_program: %s, main_program: %s}"
,
startup_program_path
,
main_program_path
));
ASSERT_EQ
(
0
,
executor
->
initialize
(
config
,
context_ptr
));
ASSERT_EQ
(
0
,
executor
->
initialize
(
config
,
context_ptr
));
auto
x_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
"x"
);
auto
x_var
=
executor
->
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
"x"
);
ASSERT_NE
(
nullptr
,
x_var
);
ASSERT_NE
(
nullptr
,
x_var
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录