Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
d190118a
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d190118a
编写于
6月 01, 2020
作者:
W
wuzhihua
提交者:
GitHub
6月 01, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #21 from yaoxuefeng6/mod_yaml
update rank yaml, model, and add infer option in rank models
上级
5a6abdf6
2ff6b226
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
507 addition
and
402 deletion
+507
-402
models/rank/dcn/config.yaml
models/rank/dcn/config.yaml
+60
-37
models/rank/dcn/data/sample_data/infer/infer_sample_data
models/rank/dcn/data/sample_data/infer/infer_sample_data
+10
-0
models/rank/dcn/model.py
models/rank/dcn/model.py
+39
-43
models/rank/deepfm/config.yaml
models/rank/deepfm/config.yaml
+59
-33
models/rank/deepfm/model.py
models/rank/deepfm/model.py
+29
-44
models/rank/din/config.yaml
models/rank/din/config.yaml
+53
-33
models/rank/din/model.py
models/rank/din/model.py
+70
-77
models/rank/din/reader.py
models/rank/din/reader.py
+4
-3
models/rank/readme.md
models/rank/readme.md
+25
-3
models/rank/wide_deep/config.yaml
models/rank/wide_deep/config.yaml
+51
-29
models/rank/wide_deep/model.py
models/rank/wide_deep/model.py
+14
-19
models/rank/xdeepfm/config.yaml
models/rank/xdeepfm/config.yaml
+53
-33
models/rank/xdeepfm/model.py
models/rank/xdeepfm/model.py
+38
-47
setup.py
setup.py
+2
-1
未找到文件。
models/rank/dcn/config.yaml
浏览文件 @
d190118a
...
...
@@ -12,43 +12,66 @@
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
10
workspace
:
"
paddlerec.models.rank.dcn"
reader
:
batch_size
:
2
train_data_path
:
"
{workspace}/data/sample_data/train"
feat_dict_name
:
"
{workspace}/data/vocab"
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.dcn"
dataset
:
-
name
:
train_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26"
dense_slots
:
"
I1:1
I2:1
I3:1
I4:1
I5:1
I6:1
I7:1
I8:1
I9:1
I10:1
I11:1
I12:1
I13:1"
-
name
:
infer_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/infer"
sparse_slots
:
"
label
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26"
dense_slots
:
"
I1:1
I2:1
I3:1
I4:1
I5:1
I6:1
I7:1
I8:1
I9:1
I10:1
I11:1
I12:1
I13:1"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
cross_num
:
2
dnn_hidden_units
:
[
128
,
128
]
l2_reg_cross
:
0.00005
dnn_use_bn
:
False
clip_by_norm
:
100.0
cat_feat_num
:
"
{workspace}/data/sample_data/cat_feature_num.txt"
is_sparse
:
False
is_test
:
False
num_field
:
39
learning_rate
:
0.0001
act
:
"
relu"
optimizer
:
adam
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
hyper_parameters
:
optimizer
:
class
:
Adam
learning_rate
:
0.0001
# 用户自定义配置
cross_num
:
2
dnn_hidden_units
:
[
128
,
128
]
l2_reg_cross
:
0.00005
dnn_use_bn
:
False
clip_by_norm
:
100.0
cat_feat_num
:
"
{workspace}/data/sample_data/cat_feature_num.txt"
is_sparse
:
False
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
1
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
1
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
print_interval
:
1
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
train_sample
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/dcn/data/sample_data/infer/infer_sample_data
0 → 100644
浏览文件 @
d190118a
label:0 I1:0.69314718056 I2:1.60943791243 I3:1.79175946923 I4:0.0 I5:7.23201033166 I6:1.60943791243 I7:2.77258872224 I8:1.09861228867 I9:5.20400668708 I10:0.69314718056 I11:1.09861228867 I12:0 I13:1.09861228867 C1:95 C2:398 C3:0 C4:0 C5:53 C6:1 C7:73 C8:71 C9:3 C10:1974 C11:832 C12:0 C13:875 C14:8 C15:1764 C16:0 C17:5 C18:390 C19:226 C20:1 C21:0 C22:0 C23:8 C24:1759 C25:1 C26:862
label:0 I1:1.09861228867 I2:1.38629436112 I3:3.80666248977 I4:0.69314718056 I5:4.63472898823 I6:2.19722457734 I7:1.09861228867 I8:1.09861228867 I9:1.60943791243 I10:0.69314718056 I11:0.69314718056 I12:0 I13:1.60943791243 C1:95 C2:200 C3:1184 C4:1929 C5:53 C6:4 C7:1477 C8:2 C9:3 C10:1283 C11:1567 C12:1048 C13:271 C14:6 C15:1551 C16:899 C17:1 C18:162 C19:226 C20:2 C21:575 C22:0 C23:8 C24:1615 C25:1 C26:659
label:0 I1:1.09861228867 I2:1.38629436112 I3:0.69314718056 I4:2.7080502011 I5:6.64378973315 I6:4.49980967033 I7:1.60943791243 I8:1.09861228867 I9:5.50533153593 I10:0.69314718056 I11:1.38629436112 I12:1.38629436112 I13:3.82864139649 C1:123 C2:378 C3:991 C4:197 C5:53 C6:1 C7:689 C8:2 C9:3 C10:245 C11:623 C12:1482 C13:887 C14:21 C15:106 C16:720 C17:3 C18:768 C19:0 C20:0 C21:1010 C22:1 C23:8 C24:720 C25:0 C26:0
label:0 I1:0 I2:6.79905586206 I3:0 I4:0 I5:8.38776764398 I6:0 I7:0.0 I8:0.0 I9:0.0 I10:0 I11:0.0 I12:0 I13:0 C1:95 C2:227 C3:0 C4:219 C5:53 C6:4 C7:3174 C8:2 C9:3 C10:569 C11:1963 C12:0 C13:1150 C14:21 C15:1656 C16:0 C17:6 C18:584 C19:0 C20:0 C21:0 C22:0 C23:8 C24:954 C25:0 C26:0
label:0 I1:1.38629436112 I2:1.09861228867 I3:0 I4:0.0 I5:1.09861228867 I6:0.0 I7:1.38629436112 I8:0.0 I9:0.0 I10:0.69314718056 I11:0.69314718056 I12:0 I13:0.0 C1:121 C2:147 C3:0 C4:1356 C5:53 C6:7 C7:2120 C8:2 C9:3 C10:703 C11:1678 C12:1210 C13:1455 C14:8 C15:538 C16:1276 C17:6 C18:346 C19:0 C20:0 C21:944 C22:0 C23:10 C24:355 C25:0 C26:0
label:0 I1:0 I2:1.09861228867 I3:0 I4:0 I5:9.45915167004 I6:0 I7:0.0 I8:0.0 I9:1.94591014906 I10:0 I11:0.0 I12:0 I13:0 C1:14 C2:75 C3:993 C4:480 C5:50 C6:6 C7:1188 C8:2 C9:3 C10:245 C11:1037 C12:1365 C13:1421 C14:21 C15:786 C16:5 C17:2 C18:555 C19:0 C20:0 C21:1408 C22:6 C23:7 C24:753 C25:0 C26:0
label:0 I1:0 I2:1.60943791243 I3:1.09861228867 I4:0 I5:8.06117135969 I6:0 I7:0.0 I8:0.69314718056 I9:1.09861228867 I10:0 I11:0.0 I12:0 I13:0 C1:139 C2:343 C3:553 C4:828 C5:50 C6:4 C7:0 C8:2 C9:3 C10:245 C11:2081 C12:260 C13:455 C14:21 C15:122 C16:1159 C17:2 C18:612 C19:0 C20:0 C21:1137 C22:0 C23:1 C24:1583 C25:0 C26:0
label:1 I1:0.69314718056 I2:2.07944154168 I3:1.09861228867 I4:0.0 I5:0.0 I6:0.0 I7:0.69314718056 I8:0.0 I9:0.0 I10:0.69314718056 I11:0.69314718056 I12:0 I13:0.0 C1:95 C2:227 C3:0 C4:1567 C5:21 C6:7 C7:2496 C8:71 C9:3 C10:1913 C11:2212 C12:0 C13:673 C14:21 C15:1656 C16:0 C17:5 C18:584 C19:0 C20:0 C21:0 C22:0 C23:10 C24:954 C25:0 C26:0
label:0 I1:0 I2:3.87120101091 I3:1.60943791243 I4:2.19722457734 I5:9.85277303799 I6:5.52146091786 I7:3.36729582999 I8:3.4657359028 I9:4.9558270576 I10:0 I11:0.69314718056 I12:0 I13:2.19722457734 C1:14 C2:14 C3:454 C4:197 C5:53 C6:1 C7:1386 C8:2 C9:3 C10:0 C11:1979 C12:205 C13:214 C14:6 C15:1837 C16:638 C17:5 C18:6 C19:0 C20:0 C21:70 C22:0 C23:10 C24:720 C25:0 C26:0
label:0 I1:0 I2:3.66356164613 I3:0 I4:0.69314718056 I5:10.4263800775 I6:3.09104245336 I7:0.69314718056 I8:1.09861228867 I9:1.38629436112 I10:0 I11:0.69314718056 I12:0 I13:0.69314718056 C1:14 C2:179 C3:120 C4:746 C5:53 C6:0 C7:1312 C8:2 C9:3 C10:1337 C11:1963 C12:905 C13:1150 C14:21 C15:1820 C16:328 C17:9 C18:77 C19:0 C20:0 C21:311 C22:0 C23:10 C24:89 C25:0 C26:0
models/rank/dcn/model.py
浏览文件 @
d190118a
...
...
@@ -24,44 +24,21 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
init_network
(
self
):
def
_init_hyper_parameters
(
self
):
self
.
cross_num
=
envs
.
get_global_env
(
"hyper_parameters.cross_num"
,
None
,
self
.
_namespace
)
None
)
self
.
dnn_hidden_units
=
envs
.
get_global_env
(
"hyper_parameters.dnn_hidden_units"
,
None
,
self
.
_namespace
)
"hyper_parameters.dnn_hidden_units"
,
None
)
self
.
l2_reg_cross
=
envs
.
get_global_env
(
"hyper_parameters.l2_reg_cross"
,
None
,
self
.
_namespace
)
"hyper_parameters.l2_reg_cross"
,
None
)
self
.
dnn_use_bn
=
envs
.
get_global_env
(
"hyper_parameters.dnn_use_bn"
,
None
,
self
.
_namespace
)
None
)
self
.
clip_by_norm
=
envs
.
get_global_env
(
"hyper_parameters.clip_by_norm"
,
None
,
self
.
_namespace
)
cat_feat_num
=
envs
.
get_global_env
(
"hyper_parameters.cat_feat_num"
,
None
,
self
.
_namespace
)
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
self
.
dense_inputs
=
self
.
_dense_data_var
self
.
target_input
=
self
.
_sparse_data_var
[
0
]
cat_feat_dims_dict
=
OrderedDict
()
for
line
in
open
(
cat_feat_num
):
spls
=
line
.
strip
().
split
()
assert
len
(
spls
)
==
2
cat_feat_dims_dict
[
spls
[
0
]]
=
int
(
spls
[
1
])
self
.
cat_feat_dims_dict
=
cat_feat_dims_dict
if
cat_feat_dims_dict
else
OrderedDict
(
)
"hyper_parameters.clip_by_norm"
,
None
)
self
.
cat_feat_num
=
envs
.
get_global_env
(
"hyper_parameters.cat_feat_num"
,
None
)
self
.
is_sparse
=
envs
.
get_global_env
(
"hyper_parameters.is_sparse"
,
None
,
self
.
_namespace
)
self
.
dense_feat_names
=
[
i
.
name
for
i
in
self
.
dense_inputs
]
self
.
sparse_feat_names
=
[
i
.
name
for
i
in
self
.
sparse_inputs
]
# {feat_name: dims}
self
.
feat_dims_dict
=
OrderedDict
(
[(
feat_name
,
1
)
for
feat_name
in
self
.
dense_feat_names
])
self
.
feat_dims_dict
.
update
(
self
.
cat_feat_dims_dict
)
self
.
net_input
=
None
self
.
loss
=
None
None
)
def
_create_embedding_input
(
self
):
# sparse embedding
...
...
@@ -121,9 +98,29 @@ class Model(ModelBase):
def
_l2_loss
(
self
,
w
):
return
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
square
(
w
))
def
train_net
(
self
):
self
.
_init_slots
()
self
.
init_network
()
def
net
(
self
,
inputs
,
is_infer
=
False
):
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
self
.
dense_inputs
=
self
.
_dense_data_var
self
.
target_input
=
self
.
_sparse_data_var
[
0
]
cat_feat_dims_dict
=
OrderedDict
()
for
line
in
open
(
self
.
cat_feat_num
):
spls
=
line
.
strip
().
split
()
assert
len
(
spls
)
==
2
cat_feat_dims_dict
[
spls
[
0
]]
=
int
(
spls
[
1
])
self
.
cat_feat_dims_dict
=
cat_feat_dims_dict
if
cat_feat_dims_dict
else
OrderedDict
(
)
self
.
dense_feat_names
=
[
i
.
name
for
i
in
self
.
dense_inputs
]
self
.
sparse_feat_names
=
[
i
.
name
for
i
in
self
.
sparse_inputs
]
# {feat_name: dims}
self
.
feat_dims_dict
=
OrderedDict
(
[(
feat_name
,
1
)
for
feat_name
in
self
.
dense_feat_names
])
self
.
feat_dims_dict
.
update
(
self
.
cat_feat_dims_dict
)
self
.
net_input
=
None
self
.
loss
=
None
self
.
net_input
=
self
.
_create_embedding_input
()
...
...
@@ -146,6 +143,9 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
# logloss
logloss
=
fluid
.
layers
.
log_loss
(
self
.
prob
,
fluid
.
layers
.
cast
(
...
...
@@ -157,11 +157,7 @@ class Model(ModelBase):
self
.
loss
=
self
.
avg_logloss
+
l2_reg_cross_loss
self
.
_cost
=
self
.
loss
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
):
self
.
train_net
()
#def optimizer(self):
#
# optimizer = fluid.optimizer.Adam(self.learning_rate, lazy_mode=True)
# return optimizer
models/rank/deepfm/config.yaml
浏览文件 @
d190118a
...
...
@@ -12,39 +12,65 @@
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
10
workspace
:
"
paddlerec.models.rank.deepfm"
reader
:
batch_size
:
2
train_data_path
:
"
{workspace}/data/sample_data/train"
feat_dict_name
:
"
{workspace}/data/sample_data/feat_dict_10.pkl2"
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.deepfm"
dataset
:
-
name
:
train_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
-
name
:
infer_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
fc_sizes
:
[
400
,
400
,
400
]
learning_rate
:
0.0001
reg
:
0.001
act
:
"
relu"
optimizer
:
SGD
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
fc_sizes
:
[
400
,
400
,
400
]
reg
:
0.001
act
:
"
relu"
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
2
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
1
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
print_interval
:
1
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
train_sample
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/deepfm/model.py
浏览文件 @
d190118a
...
...
@@ -24,42 +24,46 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
deepfm_net
(
self
):
def
_init_hyper_parameters
(
self
):
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
)
self
.
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
)
self
.
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
)
self
.
layer_sizes
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
)
self
.
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
init_value_
=
0.1
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
# ------------------------- network input --------------------------
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
,
self
.
_namespace
)
raw_feat_idx
=
self
.
_sparse_data_var
[
1
]
raw_feat_value
=
self
.
_dense_data_var
[
0
]
self
.
label
=
self
.
_sparse_data_var
[
0
]
feat_idx
=
raw_feat_idx
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
num_field
,
1
])
# None * num_field * 1
raw_feat_value
,
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
,
self
.
_namespace
)
first_weights_re
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
sparse_feature_number
+
1
,
1
],
size
=
[
s
elf
.
s
parse_feature_number
+
1
,
1
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
),
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
reg
)))
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
self
.
reg
)))
first_weights
=
fluid
.
layers
.
reshape
(
first_weights_re
,
shape
=
[
-
1
,
num_field
,
1
])
# None * num_field * 1
first_weights_re
,
shape
=
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
y_first_order
=
fluid
.
layers
.
reduce_sum
((
first_weights
*
feat_value
),
1
)
...
...
@@ -70,16 +74,17 @@ class Model(ModelBase):
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
s
parse_feature_number
+
1
,
sparse_feature_dim
],
size
=
[
s
elf
.
sparse_feature_number
+
1
,
self
.
sparse_feature_dim
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
/
math
.
sqrt
(
float
(
sparse_feature_dim
)))))
scale
=
init_value_
/
math
.
sqrt
(
float
(
self
.
sparse_feature_dim
)))))
feat_embeddings
=
fluid
.
layers
.
reshape
(
feat_embeddings_re
,
shape
=
[
-
1
,
num_field
,
sparse_feature_dim
])
# None * num_field * embedding_size
shape
=
[
-
1
,
self
.
num_field
,
self
.
sparse_feature_dim
])
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
# None * num_field * embedding_size
# sum_square part
...
...
@@ -101,17 +106,13 @@ class Model(ModelBase):
# ------------------------- DNN --------------------------
layer_sizes
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
,
self
.
_namespace
)
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
num_field
*
sparse_feature_dim
])
for
s
in
layer_sizes
:
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
self
.
num_field
*
self
.
sparse_feature_dim
])
for
s
in
self
.
layer_sizes
:
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
size
=
s
,
act
=
act
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
/
math
.
sqrt
(
float
(
10
)))),
...
...
@@ -133,21 +134,12 @@ class Model(ModelBase):
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
def
train_net
(
self
):
self
.
_init_slots
()
self
.
deepfm_net
()
# ------------------------- Cost(logloss) --------------------------
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
fluid
.
layers
.
cast
(
self
.
label
,
"float32"
))
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
# ------------------------- Metric(Auc) --------------------------
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
...
...
@@ -155,12 +147,5 @@ class Model(ModelBase):
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
):
self
.
train_net
()
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
models/rank/din/config.yaml
浏览文件 @
d190118a
...
...
@@ -12,40 +12,60 @@
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.din"
epochs
:
10
workspace
:
"
paddlerec.models.rank.din"
dataset
:
-
name
:
sample_1
type
:
DataLoader
batch_size
:
5
data_path
:
"
{workspace}/data/train_data"
data_converter
:
"
{workspace}/reader.py"
-
name
:
infer_sample
type
:
DataLoader
batch_size
:
5
data_path
:
"
{workspace}/data/train_data"
data_converter
:
"
{workspace}/reader.py"
reader
:
batch_size
:
2
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train_data"
dataset_class
:
"
DataLoader"
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
use_DataLoader
:
True
item_emb_size
:
64
cat_emb_size
:
64
is_sparse
:
False
item_count
:
63001
cat_count
:
801
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
use_DataLoader
:
True
item_emb_size
:
64
cat_emb_size
:
64
is_sparse
:
False
config_path
:
"
data/config.txt"
fc_sizes
:
[
400
,
400
,
400
]
learning_rate
:
0.0001
reg
:
0.001
act
:
"
sigmoid"
optimizer
:
SGD
act
:
"
sigmoid"
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
mode
:
train_runner
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
1
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
1
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
sample_1
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/din/model.py
浏览文件 @
d190118a
...
...
@@ -22,12 +22,58 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
config_read
(
self
,
config_path
):
with
open
(
config_path
,
"r"
)
as
fin
:
user_count
=
int
(
fin
.
readline
().
strip
())
item_count
=
int
(
fin
.
readline
().
strip
())
cat_count
=
int
(
fin
.
readline
().
strip
())
return
user_count
,
item_count
,
cat_count
def
_init_hyper_parameters
(
self
):
self
.
item_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.item_emb_size"
,
64
)
self
.
cat_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.cat_emb_size"
,
64
)
self
.
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
"sigmoid"
)
self
.
is_sparse
=
envs
.
get_global_env
(
"hyper_parameters.is_sparse"
,
False
)
#significant for speeding up the training process
self
.
use_DataLoader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
)
self
.
item_count
=
envs
.
get_global_env
(
"hyper_parameters.item_count"
,
63001
)
self
.
cat_count
=
envs
.
get_global_env
(
"hyper_parameters.cat_count"
,
801
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
seq_len
=
-
1
self
.
data_var
=
[]
hist_item_seq
=
fluid
.
data
(
name
=
"hist_item_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
hist_item_seq
)
hist_cat_seq
=
fluid
.
data
(
name
=
"hist_cat_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
hist_cat_seq
)
target_item
=
fluid
.
data
(
name
=
"target_item"
,
shape
=
[
None
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
target_item
)
target_cat
=
fluid
.
data
(
name
=
"target_cat"
,
shape
=
[
None
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
target_cat
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
"float32"
)
self
.
data_var
.
append
(
label
)
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
None
,
seq_len
,
1
],
dtype
=
"float32"
)
self
.
data_var
.
append
(
mask
)
target_item_seq
=
fluid
.
data
(
name
=
"target_item_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
target_item_seq
)
target_cat_seq
=
fluid
.
data
(
name
=
"target_cat_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
data_var
.
append
(
target_cat_seq
)
train_inputs
=
[
hist_item_seq
]
+
[
hist_cat_seq
]
+
[
target_item
]
+
[
target_cat
]
+
[
label
]
+
[
mask
]
+
[
target_item_seq
]
+
[
target_cat_seq
]
return
train_inputs
def
din_attention
(
self
,
hist
,
target_expand
,
mask
):
"""activation weight"""
...
...
@@ -59,104 +105,58 @@ class Model(ModelBase):
out
=
fluid
.
layers
.
reshape
(
x
=
out
,
shape
=
[
0
,
hidden_size
])
return
out
def
train_net
(
self
):
seq_len
=
-
1
self
.
item_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.item_emb_size"
,
64
,
self
.
_namespace
)
self
.
cat_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.cat_emb_size"
,
64
,
self
.
_namespace
)
self
.
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
"sigmoid"
,
self
.
_namespace
)
#item_emb_size = 64
#cat_emb_size = 64
self
.
is_sparse
=
envs
.
get_global_env
(
"hyper_parameters.is_sparse"
,
False
,
self
.
_namespace
)
#significant for speeding up the training process
self
.
config_path
=
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
"data/config.txt"
,
self
.
_namespace
)
self
.
use_DataLoader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
user_count
,
item_count
,
cat_count
=
self
.
config_read
(
self
.
config_path
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
hist_item_seq
=
inputs
[
0
]
hist_cat_seq
=
inputs
[
1
]
target_item
=
inputs
[
2
]
target_cat
=
inputs
[
3
]
label
=
inputs
[
4
]
mask
=
inputs
[
5
]
target_item_seq
=
inputs
[
6
]
target_cat_seq
=
inputs
[
7
]
item_emb_attr
=
fluid
.
ParamAttr
(
name
=
"item_emb"
)
cat_emb_attr
=
fluid
.
ParamAttr
(
name
=
"cat_emb"
)
hist_item_seq
=
fluid
.
data
(
name
=
"hist_item_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
hist_item_seq
)
hist_cat_seq
=
fluid
.
data
(
name
=
"hist_cat_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
hist_cat_seq
)
target_item
=
fluid
.
data
(
name
=
"target_item"
,
shape
=
[
None
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
target_item
)
target_cat
=
fluid
.
data
(
name
=
"target_cat"
,
shape
=
[
None
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
target_cat
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
"float32"
)
self
.
_data_var
.
append
(
label
)
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
None
,
seq_len
,
1
],
dtype
=
"float32"
)
self
.
_data_var
.
append
(
mask
)
target_item_seq
=
fluid
.
data
(
name
=
"target_item_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
target_item_seq
)
target_cat_seq
=
fluid
.
data
(
name
=
"target_cat_seq"
,
shape
=
[
None
,
seq_len
],
dtype
=
"int64"
)
self
.
_data_var
.
append
(
target_cat_seq
)
if
self
.
use_DataLoader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
10000
,
use_double_buffer
=
False
,
iterable
=
False
)
hist_item_emb
=
fluid
.
embedding
(
input
=
hist_item_seq
,
size
=
[
item_count
,
self
.
item_emb_size
],
size
=
[
self
.
item_count
,
self
.
item_emb_size
],
param_attr
=
item_emb_attr
,
is_sparse
=
self
.
is_sparse
)
hist_cat_emb
=
fluid
.
embedding
(
input
=
hist_cat_seq
,
size
=
[
cat_count
,
self
.
cat_emb_size
],
size
=
[
self
.
cat_count
,
self
.
cat_emb_size
],
param_attr
=
cat_emb_attr
,
is_sparse
=
self
.
is_sparse
)
target_item_emb
=
fluid
.
embedding
(
input
=
target_item
,
size
=
[
item_count
,
self
.
item_emb_size
],
size
=
[
self
.
item_count
,
self
.
item_emb_size
],
param_attr
=
item_emb_attr
,
is_sparse
=
self
.
is_sparse
)
target_cat_emb
=
fluid
.
embedding
(
input
=
target_cat
,
size
=
[
cat_count
,
self
.
cat_emb_size
],
size
=
[
self
.
cat_count
,
self
.
cat_emb_size
],
param_attr
=
cat_emb_attr
,
is_sparse
=
self
.
is_sparse
)
target_item_seq_emb
=
fluid
.
embedding
(
input
=
target_item_seq
,
size
=
[
item_count
,
self
.
item_emb_size
],
size
=
[
self
.
item_count
,
self
.
item_emb_size
],
param_attr
=
item_emb_attr
,
is_sparse
=
self
.
is_sparse
)
target_cat_seq_emb
=
fluid
.
embedding
(
input
=
target_cat_seq
,
size
=
[
cat_count
,
self
.
cat_emb_size
],
size
=
[
self
.
cat_count
,
self
.
cat_emb_size
],
param_attr
=
cat_emb_attr
,
is_sparse
=
self
.
is_sparse
)
item_b
=
fluid
.
embedding
(
input
=
target_item
,
size
=
[
item_count
,
1
],
size
=
[
self
.
item_count
,
1
],
param_attr
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
hist_seq_concat
=
fluid
.
layers
.
concat
(
...
...
@@ -195,12 +195,5 @@ class Model(ModelBase):
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
deepfm_net
()
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
models/rank/din/reader.py
浏览文件 @
d190118a
...
...
@@ -29,8 +29,8 @@ from paddlerec.core.utils import envs
class
TrainReader
(
Reader
):
def
init
(
self
):
self
.
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
"train.reader"
)
self
.
train_data_path
=
envs
.
get_global_env
(
"dataset.sample_1.data_path"
,
None
)
self
.
res
=
[]
self
.
max_len
=
0
...
...
@@ -46,7 +46,8 @@ class TrainReader(Reader):
fo
=
open
(
"tmp.txt"
,
"w"
)
fo
.
write
(
str
(
self
.
max_len
))
fo
.
close
()
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
32
,
"train.reader"
)
self
.
batch_size
=
envs
.
get_global_env
(
"dataset.sample_1.batch_size"
,
32
,
"train.reader"
)
self
.
group_size
=
self
.
batch_size
*
20
def
_process_line
(
self
,
line
):
...
...
models/rank/readme.md
浏览文件 @
d190118a
...
...
@@ -56,7 +56,18 @@
<img
align=
"center"
src=
"../../doc/imgs/din.png"
>
<p>
## 使用教程
## 使用教程(快速开始)
使用样例数据快速开始,参考
[
训练
](
###训练
)
&
[
预测
](
###预测
)
## 使用教程(复现论文)
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参,并使用提供的脚本下载对应数据集以及数据预处理。
| 模型 | batch_size | thread_num | epoch_num |
| :------------------: | :--------------------: | :--------------------: | :--------------------: |
| DNN | 1000 | 10 | 1 |
| DCN | 512 | 20 | 2 |
| DeepFM | 100 | 10 | 30 |
| DIN | 32 | 10 | 100 |
| Wide&Deep | 40 | 1 | 40 |
| xDeepFM | 100 | 1 | 10 |
### 数据处理
参考每个模型目录数据下载&预处理脚本
...
...
@@ -68,11 +79,21 @@ sh run.sh
### 训练
```
python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例
cd modles/rank/dnn # 进入选定好的排序模型的目录 以DNN为例
python -m paddlerec.run -m paddlerec.models.rank.dnn # 使用内置配置
# 如果需要使用自定义配置,config.yaml中workspace需要使用改模型目录的绝对路径
# 自定义修改超参后,指定配置文件,使用自定义配置
python -m paddlerec.run -m ./config.yaml
```
### 预测
```
python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例
# 修改对应模型的config.yaml,mode配置infer_runner
# 示例: mode: runner1 -> mode: infer_runner
# infer_runner中 class配置为 class: single_infer
# 如果训练阶段和预测阶段的模型输入一致,phase不需要改动,复用train的即可
# 修改完config.yaml后 执行:
python -m paddlerec.run -m ./config.yaml # 以DNN为例
```
## 效果对比
...
...
@@ -87,6 +108,7 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例
| Census-income Data | Wide&Deep | 0.76195 | 0.90577 | -- | -- |
| Amazon Product | DIN | 0.47005 | 0.86379 | -- | -- |
## 分布式
### 模型训练性能 (样本/s)
| 数据集 | 模型 | 单机 | 同步 (4节点) | 同步 (8节点) | 同步 (16节点) | 同步 (32节点) |
...
...
models/rank/wide_deep/config.yaml
浏览文件 @
d190118a
...
...
@@ -12,37 +12,59 @@
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.wide_deep"
epochs
:
10
workspace
:
"
paddlerec.models.rank.wide_deep"
reader
:
batch_size
:
2
train_data_path
:
"
{workspace}/data/sample_data/train"
dataset
:
-
name
:
sample_1
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label"
dense_slots
:
"
wide_input:8
deep_input:58"
-
name
:
infer_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label"
dense_slots
:
"
wide_input:8
deep_input:58"
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
hidden1_units
:
75
hidden2_units
:
50
hidden3_units
:
25
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
1
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
hidden1_units
:
75
hidden2_units
:
50
hidden3_units
:
25
learning_rate
:
0.0001
reg
:
0.001
act
:
"
relu"
optimizer
:
SGD
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
sample_1
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/wide_deep/model.py
浏览文件 @
d190118a
...
...
@@ -24,6 +24,14 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
_init_hyper_parameters
(
self
):
self
.
hidden1_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden1_units"
,
75
)
self
.
hidden2_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden2_units"
,
50
)
self
.
hidden3_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden3_units"
,
25
)
def
wide_part
(
self
,
data
):
out
=
fluid
.
layers
.
fc
(
input
=
data
,
...
...
@@ -56,21 +64,14 @@ class Model(ModelBase):
return
l3
def
train_net
(
self
):
self
.
_init_slots
()
def
net
(
self
,
inputs
,
is_infer
=
False
):
wide_input
=
self
.
_dense_data_var
[
0
]
deep_input
=
self
.
_dense_data_var
[
1
]
label
=
self
.
_sparse_data_var
[
0
]
hidden1_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden1_units"
,
75
,
self
.
_namespace
)
hidden2_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden2_units"
,
50
,
self
.
_namespace
)
hidden3_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden3_units"
,
25
,
self
.
_namespace
)
wide_output
=
self
.
wide_part
(
wide_input
)
deep_output
=
self
.
deep_part
(
deep_input
,
hidden1_units
,
hidden2
_units
,
hidden3_units
)
deep_output
=
self
.
deep_part
(
deep_input
,
self
.
hidden1
_units
,
self
.
hidden2_units
,
self
.
hidden3_units
)
wide_model
=
fluid
.
layers
.
fc
(
input
=
wide_output
,
...
...
@@ -109,18 +110,12 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
self
.
_metrics
[
"ACC"
]
=
acc
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
self
.
_infer_results
[
"ACC"
]
=
acc
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
fluid
.
layers
.
cast
(
label
,
dtype
=
'float32'
))
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
_cost
=
avg_cost
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
):
self
.
train_net
()
models/rank/xdeepfm/config.yaml
浏览文件 @
d190118a
...
...
@@ -11,41 +11,61 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
debug
:
false
workspace
:
"
paddlerec.models.rank.xdeepfm"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
10
workspace
:
"
paddlerec.models.rank.xdeepfm
"
reader
:
batch_size
:
2
train_
data_path
:
"
{workspace}/data/sample_data/train"
dataset
:
-
name
:
sample_1
type
:
QueueDataset
#或者DataLoader
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39
"
-
name
:
infer_sample
type
:
QueueDataset
#或者DataLoader
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
layer_sizes_dnn
:
[
10
,
10
,
10
]
layer_sizes_cin
:
[
10
,
10
]
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
fc_sizes
:
[
400
,
400
,
400
]
learning_rate
:
0.0001
reg
:
0.0001
act
:
"
relu"
optimizer
:
SGD
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
layer_sizes_dnn
:
[
10
,
10
,
10
]
layer_sizes_cin
:
[
10
,
10
]
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
fc_sizes
:
[
400
,
400
,
400
]
act
:
"
relu"
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
1
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
sav
e
:
increment
:
dirname
:
"
increment
"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference
"
epoch_interval
:
4
save_last
:
True
phas
e
:
-
name
:
phase1
model
:
"
{workspace}/model.py
"
dataset_name
:
sample_1
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py
"
# dataset_name: infer_sample
# thread_num: 1
models/rank/xdeepfm/model.py
浏览文件 @
d190118a
...
...
@@ -22,38 +22,45 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
xdeepfm_net
(
self
):
def
_init_hyper_parameters
(
self
):
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
)
self
.
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
)
self
.
layer_sizes_cin
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_cin"
,
None
)
self
.
layer_sizes_dnn
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_dnn"
,
None
)
self
.
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
raw_feat_idx
=
self
.
_sparse_data_var
[
1
]
raw_feat_value
=
self
.
_dense_data_var
[
0
]
self
.
label
=
self
.
_sparse_data_var
[
0
]
init_value_
=
0.1
initer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
# ------------------------- network input --------------------------
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
,
self
.
_namespace
)
raw_feat_idx
=
self
.
_sparse_data_var
[
1
]
raw_feat_value
=
self
.
_dense_data_var
[
0
]
self
.
label
=
self
.
_sparse_data_var
[
0
]
feat_idx
=
raw_feat_idx
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
num_field
,
1
])
# None * num_field * 1
raw_feat_value
,
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
feat_embeddings
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
dtype
=
'float32'
,
size
=
[
s
parse_feature_number
+
1
,
sparse_feature_dim
],
size
=
[
s
elf
.
sparse_feature_number
+
1
,
self
.
sparse_feature_dim
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
initer
))
feat_embeddings
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
num_field
,
sparse_feature_dim
-
1
,
self
.
num_field
,
self
.
sparse_feature_dim
])
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
# None * num_field * embedding_size
...
...
@@ -63,11 +70,11 @@ class Model(ModelBase):
input
=
feat_idx
,
is_sparse
=
True
,
dtype
=
'float32'
,
size
=
[
sparse_feature_number
+
1
,
1
],
size
=
[
s
elf
.
s
parse_feature_number
+
1
,
1
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
initer
))
weights_linear
=
fluid
.
layers
.
reshape
(
weights_linear
,
[
-
1
,
num_field
,
1
])
# None * num_field * 1
weights_linear
,
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
b_linear
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
...
...
@@ -77,31 +84,30 @@ class Model(ModelBase):
# -------------------- CIN --------------------
layer_sizes_cin
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_cin"
,
None
,
self
.
_namespace
)
Xs
=
[
feat_embeddings
]
last_s
=
num_field
for
s
in
layer_sizes_cin
:
last_s
=
self
.
num_field
for
s
in
self
.
layer_sizes_cin
:
# calculate Z^(k+1) with X^k and X^0
X_0
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
transpose
(
Xs
[
0
],
[
0
,
2
,
1
]),
[
-
1
,
s
parse_feature_dim
,
num_field
,
[
-
1
,
s
elf
.
sparse_feature_dim
,
self
.
num_field
,
1
])
# None, embedding_size, num_field, 1
X_k
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
transpose
(
Xs
[
-
1
],
[
0
,
2
,
1
]),
[
-
1
,
sparse_feature_dim
,
1
,
[
-
1
,
s
elf
.
s
parse_feature_dim
,
1
,
last_s
])
# None, embedding_size, 1, last_s
Z_k_1
=
fluid
.
layers
.
matmul
(
X_0
,
X_k
)
# None, embedding_size, num_field, last_s
# compresses Z^(k+1) to X^(k+1)
Z_k_1
=
fluid
.
layers
.
reshape
(
Z_k_1
,
[
-
1
,
s
parse_feature_dim
,
last_s
*
num_field
-
1
,
s
elf
.
sparse_feature_dim
,
last_s
*
self
.
num_field
])
# None, embedding_size, last_s*num_field
Z_k_1
=
fluid
.
layers
.
transpose
(
Z_k_1
,
[
0
,
2
,
1
])
# None, s*num_field, embedding_size
Z_k_1
=
fluid
.
layers
.
reshape
(
Z_k_1
,
[
-
1
,
last_s
*
num_field
,
1
,
sparse_feature_dim
]
Z_k_1
,
[
-
1
,
last_s
*
self
.
num_field
,
1
,
self
.
sparse_feature_dim
]
)
# None, last_s*num_field, 1, embedding_size (None, channal_in, h, w)
X_k_1
=
fluid
.
layers
.
conv2d
(
Z_k_1
,
...
...
@@ -112,7 +118,8 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
initializer
=
initer
))
# None, s, 1, embedding_size
X_k_1
=
fluid
.
layers
.
reshape
(
X_k_1
,
[
-
1
,
s
,
sparse_feature_dim
])
# None, s, embedding_size
X_k_1
,
[
-
1
,
s
,
self
.
sparse_feature_dim
])
# None, s, embedding_size
Xs
.
append
(
X_k_1
)
last_s
=
s
...
...
@@ -130,17 +137,13 @@ class Model(ModelBase):
# -------------------- DNN --------------------
layer_sizes_dnn
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_dnn"
,
None
,
self
.
_namespace
)
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
,
self
.
_namespace
)
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
num_field
*
sparse_feature_dim
])
for
s
in
layer_sizes_dnn
:
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
self
.
num_field
*
self
.
sparse_feature_dim
])
for
s
in
self
.
layer_sizes_dnn
:
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
size
=
s
,
act
=
act
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
initer
),
bias_attr
=
None
)
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
...
...
@@ -152,11 +155,6 @@ class Model(ModelBase):
# ------------------- xDeepFM ------------------
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_linear
+
y_cin
+
y_dnn
)
def
train_net
(
self
):
self
.
_init_slots
()
self
.
xdeepfm_net
()
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
fluid
.
layers
.
cast
(
self
.
label
,
"float32"
),
...
...
@@ -172,12 +170,5 @@ class Model(ModelBase):
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
):
self
.
train_net
()
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
setup.py
浏览文件 @
d190118a
...
...
@@ -62,7 +62,8 @@ def build(dirname):
models_copy
=
[
'data/*.txt'
,
'data/*/*.txt'
,
'*.yaml'
,
'*.sh'
,
'tree/*.npy'
,
'tree/*.txt'
,
'data/sample_data/*'
,
'data/sample_data/train/*'
'tree/*.txt'
,
'data/sample_data/*'
,
'data/sample_data/train/*'
,
'data/sample_data/infer/*'
]
engine_copy
=
[
'*/*.sh'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录