Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
ca1c4695
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca1c4695
编写于
5月 28, 2020
作者:
X
xjqbest
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
07bd7092
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
42 addition
and
26 deletion
+42
-26
core/reader.py
core/reader.py
+0
-3
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+29
-15
core/utils/dataloader_instance.py
core/utils/dataloader_instance.py
+3
-2
core/utils/envs.py
core/utils/envs.py
+2
-0
models/rank/dnn/model.py
models/rank/dnn/model.py
+6
-3
run.py
run.py
+2
-3
未找到文件。
core/reader.py
浏览文件 @
ca1c4695
...
...
@@ -35,7 +35,6 @@ class Reader(dg.MultiSlotDataGenerator):
else
:
raise
ValueError
(
"reader config only support yaml"
)
@
abc
.
abstractmethod
def
init
(
self
):
"""init"""
...
...
@@ -56,8 +55,6 @@ class SlotReader(dg.MultiSlotDataGenerator):
_config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
else
:
raise
ValueError
(
"reader config only support yaml"
)
#envs.set_global_envs(_config)
#envs.update_workspace()
def
init
(
self
,
sparse_slots
,
dense_slots
,
padding
=
0
):
from
operator
import
mul
...
...
core/trainers/single_trainer.py
浏览文件 @
ca1c4695
...
...
@@ -69,13 +69,14 @@ class SingleTrainer(TranspileTrainer):
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
if
sparse_slots
is
None
and
dense_slots
is
None
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
is
None
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
...
...
@@ -145,19 +146,29 @@ class SingleTrainer(TranspileTrainer):
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
()
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
is_infer
=
model_dict
.
get
(
"is_infer"
,
False
))
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
is_infer
=
model_dict
.
get
(
"is_infer"
,
False
))
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
...
...
@@ -167,13 +178,14 @@ class SingleTrainer(TranspileTrainer):
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
...
...
@@ -289,7 +301,8 @@ class SingleTrainer(TranspileTrainer):
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
save_interval
=
envs
.
get_global_env
(
"epoch.save_inference_interval"
,
-
1
)
save_interval
=
int
(
envs
.
get_global_env
(
"epoch.save_inference_interval"
,
-
1
)
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
"epoch.save_inference_feed_varnames"
,
None
)
...
...
@@ -313,7 +326,8 @@ class SingleTrainer(TranspileTrainer):
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
save_interval
=
int
(
envs
.
get_global_env
(
"epoch.save_checkpoint_interval"
,
-
1
))
save_interval
=
int
(
envs
.
get_global_env
(
"epoch.save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
"epoch.save_checkpoint_path"
,
None
)
...
...
core/utils/dataloader_instance.py
浏览文件 @
ca1c4695
...
...
@@ -19,6 +19,7 @@ from paddlerec.core.utils.envs import get_global_env
from
paddlerec.core.utils.envs
import
get_runtime_environ
from
paddlerec.core.reader
import
SlotReader
def
dataloader_by_name
(
readerclass
,
dataset_name
,
yaml_file
):
reader_class
=
lazy_instance_by_fliename
(
readerclass
,
"TrainReader"
)
name
=
"dataset."
+
dataset_name
+
"."
...
...
@@ -30,9 +31,9 @@ def dataloader_by_name(readerclass, dataset_name, yaml_file):
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
reader
=
reader_class
(
yaml_file
)
reader
.
init
()
def
gen_reader
():
for
file
in
files
:
with
open
(
file
,
'r'
)
as
f
:
...
...
@@ -67,7 +68,6 @@ def slotdataloader_by_name(readerclass, dataset_name, yaml_file):
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
sparse
=
get_global_env
(
name
+
"sparse_slots"
)
dense
=
get_global_env
(
name
+
"dense_slots"
)
padding
=
get_global_env
(
name
+
"padding"
,
0
)
...
...
@@ -96,6 +96,7 @@ def slotdataloader_by_name(readerclass, dataset_name, yaml_file):
return
gen_batch_reader
()
return
gen_reader
def
dataloader
(
readerclass
,
train
,
yaml_file
):
if
train
==
"TRAIN"
:
reader_name
=
"TrainReader"
...
...
core/utils/envs.py
浏览文件 @
ca1c4695
...
...
@@ -20,6 +20,7 @@ import sys
global_envs
=
{}
def
flatten_environs
(
envs
,
separator
=
"."
):
flatten_dict
=
{}
assert
isinstance
(
envs
,
dict
)
...
...
@@ -81,6 +82,7 @@ def set_global_envs(envs):
fatten_env_namespace
([],
envs
)
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
"""
get os environment value
...
...
models/rank/dnn/model.py
浏览文件 @
ca1c4695
...
...
@@ -27,9 +27,12 @@ class Model(ModelBase):
def
_init_hyper_parameters
(
self
):
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
)
==
"CtrTrainer"
else
False
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
)
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
)
def
net
(
self
,
input
,
is_infer
=
False
):
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
...
...
run.py
浏览文件 @
ca1c4695
...
...
@@ -68,10 +68,8 @@ def get_engine(args):
if
engine
is
None
:
engine
=
run_extras
.
get
(
"epoch.trainer_class"
,
None
)
if
engine
is
None
:
engine
=
"single"
engine
=
"single"
engine
=
engine
.
upper
()
if
engine
not
in
engine_choices
:
raise
ValueError
(
"train.engin can not be chosen in {}"
.
format
(
engine_choices
))
...
...
@@ -135,6 +133,7 @@ def single_engine(args):
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
def
update_workspace
(
cluster_envs
):
workspace
=
cluster_envs
.
get
(
"engine_workspace"
,
None
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录