Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
afec7a49
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
afec7a49
编写于
4月 02, 2020
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
debug ctr-dnn local training
上级
987e86a6
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
170 addition
and
42 deletion
+170
-42
examples/ctr-dnn_train.yaml
examples/ctr-dnn_train.yaml
+4
-4
models/ctr_dnn/__init__.py
models/ctr_dnn/__init__.py
+13
-0
models/ctr_dnn/data/test/sample_test.txt
models/ctr_dnn/data/test/sample_test.txt
+0
-0
models/ctr_dnn/data/train/sample_train.txt
models/ctr_dnn/data/train/sample_train.txt
+0
-0
models/ctr_dnn/dataloader.py
models/ctr_dnn/dataloader.py
+0
-0
models/ctr_dnn/dataset.py
models/ctr_dnn/dataset.py
+65
-0
models/ctr_dnn/model.py
models/ctr_dnn/model.py
+15
-11
trainer/factory.py
trainer/factory.py
+3
-0
trainer/single_train.py
trainer/single_train.py
+22
-14
utils/envs.py
utils/envs.py
+48
-13
未找到文件。
examples/ctr-dnn_train.yaml
浏览文件 @
afec7a49
...
...
@@ -25,7 +25,6 @@
# limitations under the License.
train
:
batch_size
:
32
threads
:
12
epochs
:
10
trainer
:
"
SingleTraining"
...
...
@@ -35,11 +34,12 @@ train:
reader
:
mode
:
"
dataset"
pipe_command
:
"
python
reader.py
dataset"
train_data_path
:
"
raw_data"
batch_size
:
32
pipe_command
:
"
python
/paddle/eleps/models/ctr_dnn/dataset.py"
train_data_path
:
"
/paddle/eleps/models/ctr_dnn/data/train"
model
:
models
:
"
eleps.models.ctr_dnn.model
.py
"
models
:
"
eleps.models.ctr_dnn.model"
hyper_parameters
:
sparse_inputs_slots
:
27
sparse_feature_number
:
1000001
...
...
models/ctr_dnn/__init__.py
0 → 100755
浏览文件 @
afec7a49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
models/ctr_dnn/sample_test.txt
→
models/ctr_dnn/
data/test/
sample_test.txt
浏览文件 @
afec7a49
文件已移动
models/ctr_dnn/sample_train.txt
→
models/ctr_dnn/
data/train/
sample_train.txt
浏览文件 @
afec7a49
文件已移动
models/ctr_dnn/
re
ader.py
→
models/ctr_dnn/
datalo
ader.py
浏览文件 @
afec7a49
文件已移动
models/ctr_dnn/dataset.py
0 → 100644
浏览文件 @
afec7a49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid.incubate.data_generator
as
dg
cont_min_
=
[
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
cont_max_
=
[
20
,
600
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
cont_diff_
=
[
20
,
603
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
hash_dim_
=
1000001
continuous_range_
=
range
(
1
,
14
)
categorical_range_
=
range
(
14
,
40
)
class
CriteoDataset
(
dg
.
MultiSlotDataGenerator
):
"""
DacDataset: inheritance MultiSlotDataGeneratior, Implement data reading
Help document: http://wiki.baidu.com/pages/viewpage.action?pageId=728820675
"""
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
"""
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
dense_feature
=
[]
sparse_feature
=
[]
for
idx
in
continuous_range_
:
if
features
[
idx
]
==
""
:
dense_feature
.
append
(
0.0
)
else
:
dense_feature
.
append
(
(
float
(
features
[
idx
])
-
cont_min_
[
idx
-
1
])
/
cont_diff_
[
idx
-
1
])
for
idx
in
categorical_range_
:
sparse_feature
.
append
(
[
hash
(
str
(
idx
)
+
features
[
idx
])
%
hash_dim_
])
label
=
[
int
(
features
[
0
])]
process_line
=
dense_feature
,
sparse_feature
,
label
feature_name
=
[
"dense_input"
]
for
idx
in
categorical_range_
:
feature_name
.
append
(
"C"
+
str
(
idx
-
13
))
feature_name
.
append
(
"label"
)
yield
zip
(
feature_name
,
[
dense_feature
]
+
sparse_feature
+
[
label
])
return
reader
d
=
CriteoDataset
()
d
.
run_from_stdin
()
models/ctr_dnn/model.py
浏览文件 @
afec7a49
...
...
@@ -15,7 +15,7 @@
import
math
import
paddle.fluid
as
fluid
from
..
.utils
import
envs
from
eleps
.utils
import
envs
class
Train
(
object
):
...
...
@@ -28,10 +28,12 @@ class Train(object):
self
.
sparse_input_varnames
=
[]
self
.
dense_input_varname
=
None
self
.
label_input_varname
=
None
self
.
namespace
=
"train.model"
def
input
(
self
):
def
sparse_inputs
():
ids
=
envs
.
get_global_env
(
"
sparse_inputs_counts"
)
ids
=
envs
.
get_global_env
(
"
hyper_parameters.sparse_inputs_slots"
,
None
,
self
.
namespace
)
sparse_input_ids
=
[
fluid
.
layers
.
data
(
name
=
"C"
+
str
(
i
),
...
...
@@ -42,10 +44,10 @@ class Train(object):
return
sparse_input_ids
,
[
var
.
name
for
var
in
sparse_input_ids
]
def
dense_input
():
d
ense_input_dim
=
envs
.
get_global_env
(
"dense_input_dim"
)
d
im
=
envs
.
get_global_env
(
"hyper_parameters.dense_input_dim"
,
None
,
self
.
namespace
)
dense_input_var
=
fluid
.
layers
.
data
(
name
=
"dense_input"
,
shape
=
dense_input_dim
,
shape
=
[
dim
]
,
dtype
=
"float32"
)
return
dense_input_var
,
dense_input_var
.
name
...
...
@@ -65,13 +67,13 @@ class Train(object):
def
net
(
self
):
def
embedding_layer
(
input
):
sparse_feature_number
=
envs
.
get_global_env
(
"
sparse_feature_number"
)
sparse_feature_dim
=
envs
.
get_global_env
(
"
sparse_feature_dim"
)
sparse_feature_number
=
envs
.
get_global_env
(
"
hyper_parameters.sparse_feature_number"
,
None
,
self
.
namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"
hyper_parameters.sparse_feature_dim"
,
None
,
self
.
namespace
)
emb
=
fluid
.
layers
.
embedding
(
input
=
input
,
is_sparse
=
True
,
size
=
[
{
sparse_feature_number
},
{
sparse_feature_dim
}
],
size
=
[
sparse_feature_number
,
sparse_feature_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"SparseFeatFactors"
,
initializer
=
fluid
.
initializer
.
Uniform
()),
...
...
@@ -92,7 +94,7 @@ class Train(object):
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
self
.
dense_input
],
axis
=
1
)
fcs
=
[
concated
]
hidden_layers
=
envs
.
get_global_env
(
"
fc_sizes"
)
hidden_layers
=
envs
.
get_global_env
(
"
hyper_parameters.fc_sizes"
,
None
,
self
.
namespace
)
for
size
in
hidden_layers
:
fcs
.
append
(
fc
(
fcs
[
-
1
],
size
))
...
...
@@ -107,8 +109,8 @@ class Train(object):
self
.
predict
=
predict
def
avg_loss
(
self
,
predict
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
self
.
label_input
)
def
avg_loss
(
self
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
loss
=
avg_cost
return
avg_cost
...
...
@@ -120,8 +122,10 @@ class Train(object):
slide_steps
=
20
)
self
.
metrics
=
(
auc
,
batch_auc
)
return
self
.
metrics
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"
learning_rate"
)
learning_rate
=
envs
.
get_global_env
(
"
hyper_parameters.learning_rate"
,
None
,
self
.
namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
...
...
trainer/factory.py
浏览文件 @
afec7a49
...
...
@@ -80,6 +80,9 @@ class TrainerFactory(object):
raise
ValueError
(
"unknown config about eleps"
)
envs
.
set_global_envs
(
_config
)
print
(
envs
.
pretty_print_envs
())
trainer
=
TrainerFactory
.
_build_trainer
(
_config
)
return
trainer
...
...
trainer/single_train.py
浏览文件 @
afec7a49
...
...
@@ -51,7 +51,10 @@ class SingleTrainer(Trainer):
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
model_package
=
__import__
(
envs
.
get_global_env
(
"train.model.models"
))
models
=
envs
.
get_global_env
(
"train.model.models"
)
model_package
=
__import__
(
models
,
globals
(),
locals
(),
models
.
split
(
"."
))
train_model
=
getattr
(
model_package
,
'Train'
)
self
.
model
=
train_model
()
...
...
@@ -64,7 +67,7 @@ class SingleTrainer(Trainer):
self
.
metrics
=
self
.
model
.
metrics
()
loss
=
self
.
model
.
avg_loss
()
optimizer
=
self
.
model
.
get_
optimizer
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
.
minimize
(
loss
)
# run startup program at once
...
...
@@ -89,15 +92,24 @@ class SingleTrainerWithDataloader(SingleTrainer):
class
SingleTrainerWithDataset
(
SingleTrainer
):
def
_get_dataset
(
self
,
inputs
,
threads
,
batch_size
,
pipe_command
,
train_files_path
):
def
_get_dataset
(
self
):
namespace
=
"train.reader"
inputs
=
self
.
model
.
input_vars
()
threads
=
envs
.
get_global_env
(
"train.threads"
,
None
)
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
namespace
)
pipe_command
=
envs
.
get_global_env
(
"pipe_command"
,
None
,
namespace
)
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
namespace
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_use_var
(
inputs
)
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_batch_size
(
batch_size
)
dataset
.
set_thread
(
threads
)
file_list
=
[
os
.
path
.
join
(
train_
files
_path
,
x
)
for
x
in
os
.
listdir
(
train_
files
_path
)
os
.
path
.
join
(
train_
data
_path
,
x
)
for
x
in
os
.
listdir
(
train_
data
_path
)
]
dataset
.
set_filelist
(
file_list
)
...
...
@@ -146,21 +158,17 @@ class SingleTrainerWithDataset(SingleTrainer):
save_inference_model
()
def
train
(
self
,
context
):
inputs
=
self
.
model
.
input_vars
()
threads
=
envs
.
get_global_env
(
"threads"
)
batch_size
=
envs
.
get_global_env
(
"batch_size"
)
pipe_command
=
envs
.
get_global_env
(
"pipe_command"
)
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
)
dataset
=
self
.
_get_dataset
()
dataset
=
self
.
_get_dataset
(
inputs
,
threads
,
batch_size
,
pipe_command
,
train_data_path
)
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
epochs
=
envs
.
get_global_env
(
"epochs"
)
print
(
"fetch_list: {}"
.
format
(
len
(
self
.
metrics
))
)
for
i
in
range
(
epochs
):
self
.
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
[
self
.
metrics
]
,
fetch_info
=
[
"
epoch {} auc "
.
format
(
i
)
],
fetch_list
=
self
.
metrics
,
fetch_info
=
[
"
auc "
,
"batch auc"
],
print_period
=
100
)
context
[
'status'
]
=
'infer_pass'
...
...
utils/envs.py
浏览文件 @
afec7a49
...
...
@@ -14,27 +14,62 @@
import
os
import
copy
global_envs
=
{}
def
encode_value
(
v
):
return
v
def
set_global_envs
(
envs
):
assert
isinstance
(
envs
,
dict
)
def
decode_value
(
v
):
return
v
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
for
k
,
v
in
local_envs
.
items
():
if
isinstance
(
v
,
dict
):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
global_envs
[
global_k
]
=
v
for
k
,
v
in
envs
.
items
():
fatten_env_namespace
([
k
],
v
)
def
set_global_envs
(
yaml
):
for
k
,
v
in
yaml
.
items
():
os
.
environ
[
k
]
=
encode_value
(
v
)
def
get_global_env
(
env_name
,
default_value
=
None
):
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
"""
get os environment value
"""
if
env_name
not
in
os
.
environ
:
return
default_value
_env_name
=
env_name
if
namespace
is
None
else
"."
.
join
([
namespace
,
env_name
])
return
global_envs
.
get
(
_env_name
,
default_value
)
def
pretty_print_envs
():
spacing
=
5
max_k
=
45
max_v
=
20
for
k
,
v
in
global_envs
.
items
():
max_k
=
max
(
max_k
,
len
(
k
))
max_v
=
max
(
max_v
,
len
(
str
(
v
)))
h_format
=
"{{:^{}s}}{{:<{}s}}
\n
"
.
format
(
max_k
,
max_v
)
l_format
=
"{{:<{}s}}{{}}{{:<{}s}}
\n
"
.
format
(
max_k
,
max_v
)
length
=
max_k
+
max_v
+
spacing
border
=
""
.
join
([
"="
]
*
length
)
line
=
""
.
join
([
"-"
]
*
length
)
draws
=
""
draws
+=
border
+
"
\n
"
draws
+=
h_format
.
format
(
"Eleps Global Envs"
,
"Value"
)
draws
+=
line
+
"
\n
"
for
k
,
v
in
global_envs
.
items
():
draws
+=
l_format
.
format
(
k
,
" "
*
spacing
,
str
(
v
))
draws
+=
border
_str
=
"
\n
{}
\n
"
.
format
(
draws
)
return
_str
v
=
os
.
environ
[
env_name
]
return
decode_value
(
v
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录