Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
ad5022d2
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
ad5022d2
编写于
5月 15, 2020
作者:
Z
zhangwenhui03
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into 'develop'
add mmoe share-bottom infer See merge request
!37
上级
5e300b8c
52d3c0a5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
141 addition
and
12 deletion
+141
-12
models/multitask/mmoe/census_infer_reader.py
models/multitask/mmoe/census_infer_reader.py
+50
-0
models/multitask/mmoe/config.yaml
models/multitask/mmoe/config.yaml
+7
-1
models/multitask/mmoe/model.py
models/multitask/mmoe/model.py
+13
-4
models/multitask/share-bottom/census_infer_reader.py
models/multitask/share-bottom/census_infer_reader.py
+50
-0
models/multitask/share-bottom/config.yaml
models/multitask/share-bottom/config.yaml
+6
-0
models/multitask/share-bottom/model.py
models/multitask/share-bottom/model.py
+15
-7
未找到文件。
models/multitask/mmoe/census_infer_reader.py
0 → 100644
浏览文件 @
ad5022d2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
import
numpy
as
np
class
EvaluateReader
(
Reader
):
def
init
(
self
):
pass
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
"""
l
=
line
.
strip
().
split
(
','
)
l
=
list
(
map
(
float
,
l
))
label_income
=
[]
label_marital
=
[]
data
=
l
[
2
:]
if
int
(
l
[
1
])
==
0
:
label_income
=
[
1
,
0
]
elif
int
(
l
[
1
])
==
1
:
label_income
=
[
0
,
1
]
if
int
(
l
[
0
])
==
0
:
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
return
reader
models/multitask/mmoe/config.yaml
浏览文件 @
ad5022d2
...
...
@@ -12,6 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
reader
:
batch_size
:
1
class
:
"
{workspace}/census_infer_reader.py"
test_data_path
:
"
{workspace}/data/train"
train
:
trainer
:
# for cluster training
...
...
@@ -22,7 +28,7 @@ train:
device
:
cpu
reader
:
batch_size
:
2
batch_size
:
1
class
:
"
{workspace}/census_reader.py"
train_data_path
:
"
{workspace}/data/train"
...
...
models/multitask/mmoe/model.py
浏览文件 @
ad5022d2
...
...
@@ -23,7 +23,7 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
MMOE
(
self
):
def
MMOE
(
self
,
is_infer
=
False
):
feature_size
=
envs
.
get_global_env
(
"hyper_parameters.feature_size"
,
None
,
self
.
_namespace
)
expert_num
=
envs
.
get_global_env
(
"hyper_parameters.expert_num"
,
None
,
self
.
_namespace
)
...
...
@@ -34,6 +34,10 @@ class Model(ModelBase):
input_data
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
-
1
,
feature_size
],
dtype
=
"float32"
)
label_income
=
fluid
.
data
(
name
=
"label_income"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
label_marital
=
fluid
.
data
(
name
=
"label_marital"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
if
is_infer
:
self
.
_infer_data_var
=
[
input_data
,
label_income
,
label_marital
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
_data_var
.
extend
([
input_data
,
label_income
,
label_marital
])
# f_{i}(x) = activation(W_{i} * x + b), where activation is ReLU according to the paper
...
...
@@ -75,14 +79,19 @@ class Model(ModelBase):
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
avg_cost_income
=
fluid
.
layers
.
mean
(
x
=
cost_income
)
avg_cost_marital
=
fluid
.
layers
.
mean
(
x
=
cost_marital
)
...
...
@@ -101,4 +110,4 @@ class Model(ModelBase):
def
infer_net
(
self
):
pass
self
.
MMOE
(
is_infer
=
True
)
models/multitask/share-bottom/census_infer_reader.py
0 → 100644
浏览文件 @
ad5022d2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
import
numpy
as
np
class
EvaluateReader
(
Reader
):
def
init
(
self
):
pass
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
"""
l
=
line
.
strip
().
split
(
','
)
l
=
list
(
map
(
float
,
l
))
label_income
=
[]
label_marital
=
[]
data
=
l
[
2
:]
if
int
(
l
[
1
])
==
0
:
label_income
=
[
1
,
0
]
elif
int
(
l
[
1
])
==
1
:
label_income
=
[
0
,
1
]
if
int
(
l
[
0
])
==
0
:
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
return
reader
models/multitask/share-bottom/config.yaml
浏览文件 @
ad5022d2
...
...
@@ -12,6 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
reader
:
batch_size
:
1
class
:
"
{workspace}/census_infer_reader.py"
test_data_path
:
"
{workspace}/data/train"
train
:
trainer
:
# for cluster training
...
...
models/multitask/share-bottom/model.py
浏览文件 @
ad5022d2
...
...
@@ -23,7 +23,7 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
train
(
self
):
def
model
(
self
,
is_infer
=
False
):
feature_size
=
envs
.
get_global_env
(
"hyper_parameters.feature_size"
,
None
,
self
.
_namespace
)
bottom_size
=
envs
.
get_global_env
(
"hyper_parameters.bottom_size"
,
None
,
self
.
_namespace
)
...
...
@@ -34,6 +34,11 @@ class Model(ModelBase):
label_income
=
fluid
.
data
(
name
=
"label_income"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
label_marital
=
fluid
.
data
(
name
=
"label_marital"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
if
is_infer
:
self
.
_infer_data_var
=
[
input_data
,
label_income
,
label_marital
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
_data_var
.
extend
([
input_data
,
label_income
,
label_marital
])
bottom_output
=
fluid
.
layers
.
fc
(
input
=
input_data
,
...
...
@@ -60,16 +65,19 @@ class Model(ModelBase):
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost
=
fluid
.
layers
.
elementwise_add
(
cost_income
,
cost_marital
,
axis
=
1
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
@@ -82,8 +90,8 @@ class Model(ModelBase):
def
train_net
(
self
):
self
.
train
()
self
.
model
()
def
infer_net
(
self
):
pass
self
.
model
(
is_infer
=
True
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录