Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
abe7233e
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
abe7233e
编写于
6月 11, 2020
作者:
W
wuzhihua
提交者:
GitHub
6月 11, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #68 from yaoxuefeng6/add_readme
update readme with rank models
上级
e8867282
d6c6053e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
3 addition
and
1 deletion
+3
-1
README.md
README.md
+1
-0
models/rank/readme.md
models/rank/readme.md
+2
-1
未找到文件。
README.md
浏览文件 @
abe7233e
...
@@ -56,6 +56,7 @@
...
@@ -56,6 +56,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ |
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | x | ✓ |
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ |
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ |
...
...
models/rank/readme.md
浏览文件 @
abe7233e
# 排序模型库
# 排序模型库
## 简介
## 简介
我们提供了常见的排序任务中使用的模型算法的PaddleRec实现, 单机训练&预测效果指标以及分布式训练&预测性能指标等。实现的排序模型包括
[
logistic regression
](
logistic_regression
)
、
[
多层神经网络
](
dnn
)
、
[
FM
](
fm
)
、
[
FFM
](
ffm
)
、
[
PNN
](
pnn
)
、
[
多层神经网络
](
dnn
)
、
[
Deep Cross Network
](
dcn
)
、
[
DeepFM
](
deepfm
)
、
[
xDeepFM
](
xdeepfm
)
、
[
NFM
](
nfm
)
、
[
AFM
](
afm
)
、
[
Deep Interest Network
](
din
)
、
[
Wide&Deep
](
wide_deep
)
。
我们提供了常见的排序任务中使用的模型算法的PaddleRec实现, 单机训练&预测效果指标以及分布式训练&预测性能指标等。实现的排序模型包括
[
logistic regression
](
logistic_regression
)
、
[
多层神经网络
](
dnn
)
、
[
FM
](
fm
)
、
[
FFM
](
ffm
)
、
[
PNN
](
pnn
)
、
[
多层神经网络
](
dnn
)
、
[
Deep Cross Network
](
dcn
)
、
[
DeepFM
](
deepfm
)
、
[
xDeepFM
](
xdeepfm
)
、
[
NFM
](
nfm
)
、
[
AFM
](
afm
)
、
[
Deep Interest Network
](
din
)
、
[
Wide&Deep
](
wide_deep
)
、
[
FGCNN
](
fgcnn
)
。
模型算法库在持续添加中,欢迎关注。
模型算法库在持续添加中,欢迎关注。
...
@@ -34,6 +34,7 @@
...
@@ -34,6 +34,7 @@
| AFM | Attentional Factorization Machines |
[
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
](
https://arxiv.org/pdf/1708.04617.pdf
)(
2017
)
|
| AFM | Attentional Factorization Machines |
[
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
](
https://arxiv.org/pdf/1708.04617.pdf
)(
2017
)
|
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| FGCNN | Feature Generation by CNN |
[
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
](
https://arxiv.org/pdf/1904.04447.pdf
)(
2019
)
|
下面是每个模型的简介(注:图片引用自链接中的论文)
下面是每个模型的简介(注:图片引用自链接中的论文)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录