Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
aa9441c0
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aa9441c0
编写于
7月 04, 2020
作者:
Y
yaoxuefeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rank AutoInt model
上级
591b005e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
319 addition
and
0 deletion
+319
-0
README.md
README.md
+1
-0
README_CN.md
README_CN.md
+1
-0
models/rank/AutoInt/__init__.py
models/rank/AutoInt/__init__.py
+13
-0
models/rank/AutoInt/config.yaml
models/rank/AutoInt/config.yaml
+78
-0
models/rank/AutoInt/model.py
models/rank/AutoInt/model.py
+225
-0
models/rank/readme.md
models/rank/readme.md
+1
-0
未找到文件。
README.md
浏览文件 @
aa9441c0
...
...
@@ -56,6 +56,7 @@
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
README_CN.md
浏览文件 @
aa9441c0
...
...
@@ -61,6 +61,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| 排序 | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
models/rank/AutoInt/__init__.py
0 → 100755
浏览文件 @
aa9441c0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
models/rank/AutoInt/config.yaml
0 → 100755
浏览文件 @
aa9441c0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.AutoInt"
dataset
:
-
name
:
train_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
-
name
:
infer_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
d_key
:
16
d_value
:
16
n_head
:
6
dropout_rate
:
0
n_interacting_layers
:
1
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
class
:
train
epochs
:
2
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
1
-
name
:
infer_runner
class
:
infer
device
:
cpu
init_model_path
:
"
increment/0"
print_interval
:
1
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
train_sample
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/AutoInt/model.py
0 → 100755
浏览文件 @
aa9441c0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
_init_hyper_parameters
(
self
):
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
)
self
.
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
)
self
.
d_key
=
envs
.
get_global_env
(
"hyper_parameters.d_key"
,
None
)
self
.
d_value
=
envs
.
get_global_env
(
"hyper_parameters.d_value"
,
None
)
self
.
n_head
=
envs
.
get_global_env
(
"hyper_parameters.n_head"
,
None
)
self
.
dropout_rate
=
envs
.
get_global_env
(
"hyper_parameters.dropout_rate"
,
0
)
self
.
n_interacting_layers
=
envs
.
get_global_env
(
"hyper_parameters.n_interacting_layers"
,
1
)
def
multi_head_attention
(
self
,
queries
,
keys
,
values
,
d_key
,
d_value
,
n_head
,
dropout_rate
):
keys
=
queries
if
keys
is
None
else
keys
values
=
keys
if
values
is
None
else
values
if
not
(
len
(
queries
.
shape
)
==
len
(
keys
.
shape
)
==
len
(
values
.
shape
)
==
3
):
raise
ValueError
(
"Inputs: quries, keys and values should all be 3-D tensors."
)
def
__compute_qkv
(
queries
,
keys
,
values
,
n_head
,
d_key
,
d_value
):
"""
Add linear projection to queries, keys, and values.
"""
q
=
fluid
.
layers
.
fc
(
input
=
queries
,
size
=
d_key
*
n_head
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
k
=
fluid
.
layers
.
fc
(
input
=
keys
,
size
=
d_key
*
n_head
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
v
=
fluid
.
layers
.
fc
(
input
=
values
,
size
=
d_value
*
n_head
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
return
q
,
k
,
v
def
__split_heads_qkv
(
queries
,
keys
,
values
,
n_head
,
d_key
,
d_value
):
"""
Reshape input tensors at the last dimension to split multi-heads
and then transpose. Specifically, transform the input tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] to the output tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped_q
=
fluid
.
layers
.
reshape
(
x
=
queries
,
shape
=
[
0
,
0
,
n_head
,
d_key
],
inplace
=
True
)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
q
=
fluid
.
layers
.
transpose
(
x
=
reshaped_q
,
perm
=
[
0
,
2
,
1
,
3
])
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
reshaped_k
=
fluid
.
layers
.
reshape
(
x
=
keys
,
shape
=
[
0
,
0
,
n_head
,
d_key
],
inplace
=
True
)
k
=
fluid
.
layers
.
transpose
(
x
=
reshaped_k
,
perm
=
[
0
,
2
,
1
,
3
])
reshaped_v
=
fluid
.
layers
.
reshape
(
x
=
values
,
shape
=
[
0
,
0
,
n_head
,
d_value
],
inplace
=
True
)
v
=
fluid
.
layers
.
transpose
(
x
=
reshaped_v
,
perm
=
[
0
,
2
,
1
,
3
])
return
q
,
k
,
v
def
scaled_dot_product_attention
(
q
,
k
,
v
,
d_key
,
dropout_rate
):
"""
Scaled Dot-Product Attention
"""
product
=
fluid
.
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
d_key
**-
0.5
)
weights
=
fluid
.
layers
.
softmax
(
product
)
if
dropout_rate
:
weights
=
fluid
.
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
seed
=
None
,
is_test
=
False
)
out
=
fluid
.
layers
.
matmul
(
weights
,
v
)
return
out
def
__combine_heads
(
x
):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if
len
(
x
.
shape
)
!=
4
:
raise
ValueError
(
"Input(x) should be a 4-D Tensor."
)
trans_x
=
fluid
.
layers
.
transpose
(
x
,
perm
=
[
0
,
2
,
1
,
3
])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return
fluid
.
layers
.
reshape
(
x
=
trans_x
,
shape
=
[
0
,
0
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]],
inplace
=
True
)
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
n_head
,
d_key
,
d_value
)
q
,
k
,
v
=
__split_heads_qkv
(
q
,
k
,
v
,
n_head
,
d_key
,
d_value
)
d_model
=
d_key
*
n_head
ctx_multiheads
=
scaled_dot_product_attention
(
q
,
k
,
v
,
d_model
,
dropout_rate
)
out
=
__combine_heads
(
ctx_multiheads
)
return
out
def
interacting_layer
(
self
,
x
):
attention_out
=
self
.
multi_head_attention
(
x
,
None
,
None
,
self
.
d_key
,
self
.
d_value
,
self
.
n_head
,
self
.
dropout_rate
)
W_0_x
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
self
.
d_key
*
self
.
n_head
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
res_out
=
fluid
.
layers
.
relu
(
attention_out
+
W_0_x
)
self
.
d_key
=
self
.
d_key
*
self
.
n_head
self
.
d_value
=
self
.
d_value
*
self
.
n_head
return
res_out
def
net
(
self
,
inputs
,
is_infer
=
False
):
init_value_
=
0.1
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
# ------------------------- network input --------------------------
raw_feat_idx
=
self
.
_sparse_data_var
[
1
]
raw_feat_value
=
self
.
_dense_data_var
[
0
]
self
.
label
=
self
.
_sparse_data_var
[
0
]
feat_idx
=
raw_feat_idx
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
# ------------------------- Embedding --------------------------
feat_embeddings_re
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
self
.
sparse_feature_number
+
1
,
self
.
sparse_feature_dim
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
/
math
.
sqrt
(
float
(
self
.
sparse_feature_dim
)))))
feat_embeddings
=
fluid
.
layers
.
reshape
(
feat_embeddings_re
,
shape
=
[
-
1
,
self
.
num_field
,
self
.
sparse_feature_dim
])
# None * num_field * embedding_size
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
inter_input
=
feat_embeddings
# ------------------------- interacting layer --------------------------
for
_
in
range
(
self
.
n_interacting_layers
):
interacting_layer_out
=
self
.
interacting_layer
(
inter_input
)
inter_input
=
interacting_layer_out
# ------------------------- DNN --------------------------
dnn_input
=
fluid
.
layers
.
flatten
(
interacting_layer_out
,
axis
=
1
)
y_dnn
=
fluid
.
layers
.
fc
(
input
=
dnn_input
,
size
=
1
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)))
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_dnn
)
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
fluid
.
layers
.
cast
(
self
.
label
,
"float32"
))
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
label
=
label_int
,
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
models/rank/readme.md
浏览文件 @
aa9441c0
...
...
@@ -37,6 +37,7 @@
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| DIEN | Deep Interest Evolution Network |
[
Deep Interest Evolution Network for Click-Through Rate Prediction
](
https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423
)(
2019
)
|
| AutoInt | Automatic Feature Interaction Learning via Self-Attentive Neural Networks |
[
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
](
https://arxiv.org/pdf/1810.11921.pdf
)(
2019
)
|
| FGCNN | Feature Generation by CNN |
[
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
](
https://arxiv.org/pdf/1904.04447.pdf
)(
2019
)
|
| FIBINET | Combining Feature Importance and Bilinear feature Interaction |
[
《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》
](
https://arxiv.org/pdf/1905.09433.pdf
)(
2019
)
|
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录