Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
9b3afd7c
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9b3afd7c
编写于
6月 02, 2020
作者:
W
wuzhihua
提交者:
GitHub
6月 02, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #18 from 123malin/modify_yaml
fix match/dssm
上级
730495a7
13bafd53
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
603 addition
and
698 deletion
+603
-698
core/model.py
core/model.py
+7
-5
core/trainers/single_infer.py
core/trainers/single_infer.py
+1
-0
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+1
-7
models/match/dssm/config.yaml
models/match/dssm/config.yaml
+58
-36
models/match/dssm/model.py
models/match/dssm/model.py
+39
-86
models/match/dssm/synthetic_evaluate_reader.py
models/match/dssm/synthetic_evaluate_reader.py
+1
-1
models/match/multiview-simnet/config.yaml
models/match/multiview-simnet/config.yaml
+65
-41
models/match/multiview-simnet/model.py
models/match/multiview-simnet/model.py
+63
-173
models/match/readme.md
models/match/readme.md
+14
-2
models/recall/gnn/config.yaml
models/recall/gnn/config.yaml
+63
-38
models/recall/gnn/data/convert_data.py
models/recall/gnn/data/convert_data.py
+0
-0
models/recall/gnn/data/download.py
models/recall/gnn/data/download.py
+0
-0
models/recall/gnn/data/preprocess.py
models/recall/gnn/data/preprocess.py
+0
-0
models/recall/gnn/data_prepare.sh
models/recall/gnn/data_prepare.sh
+7
-5
models/recall/gnn/evaluate_reader.py
models/recall/gnn/evaluate_reader.py
+3
-3
models/recall/gnn/model.py
models/recall/gnn/model.py
+75
-114
models/recall/gnn/reader.py
models/recall/gnn/reader.py
+2
-3
models/recall/readme.md
models/recall/readme.md
+36
-2
models/recall/word2vec/config.yaml
models/recall/word2vec/config.yaml
+62
-43
models/recall/word2vec/data_prepare.sh
models/recall/word2vec/data_prepare.sh
+8
-7
models/recall/word2vec/model.py
models/recall/word2vec/model.py
+87
-121
models/recall/word2vec/preprocess.py
models/recall/word2vec/preprocess.py
+1
-1
models/recall/word2vec/w2v_evaluate_reader.py
models/recall/word2vec/w2v_evaluate_reader.py
+5
-3
models/recall/word2vec/w2v_reader.py
models/recall/word2vec/w2v_reader.py
+5
-7
未找到文件。
core/model.py
浏览文件 @
9b3afd7c
...
...
@@ -149,11 +149,13 @@ class Model(object):
return
optimizer_i
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
return
self
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
name
=
"dataset."
+
kwargs
.
get
(
"dataset_name"
)
+
"."
...
...
core/trainers/single_infer.py
浏览文件 @
9b3afd7c
...
...
@@ -167,6 +167,7 @@ class SingleInfer(TranspileTrainer):
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_infer_data_var
=
model
.
input_data
(
is_infer
=
True
,
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
...
...
core/trainers/single_trainer.py
浏览文件 @
9b3afd7c
...
...
@@ -147,11 +147,6 @@ class SingleTrainer(TranspileTrainer):
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
...
...
@@ -168,8 +163,7 @@ class SingleTrainer(TranspileTrainer):
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
=
model
.
optimizer
()
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
...
...
models/match/dssm/config.yaml
浏览文件 @
9b3afd7c
...
...
@@ -11,44 +11,66 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
reader
:
batch_size
:
1
class
:
"
{workspace}/synthetic_evaluate_reader.py"
test_data_path
:
"
{workspace}/data/train"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
4
workspace
:
"
paddlerec.models.match.dssm"
reader
:
batch_size
:
4
class
:
"
{workspace}/synthetic_reader.py"
train_data_path
:
"
{workspace}/data/train"
workspace
:
"
paddlerec.models.match.dssm"
dataset
:
-
name
:
dataset_train
batch_size
:
4
type
:
QueueDataset
data_path
:
"
{workspace}/data/train"
data_converter
:
"
{workspace}/synthetic_reader.py"
-
name
:
dataset_infer
batch_size
:
1
type
:
QueueDataset
data_path
:
"
{workspace}/data/train"
data_converter
:
"
{workspace}/synthetic_evaluate_reader.py"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
TRIGRAM_D
:
1000
NEG
:
4
fc_sizes
:
[
300
,
300
,
128
]
fc_acts
:
[
'
tanh'
,
'
tanh'
,
'
tanh'
]
learning_rate
:
0.01
optimizer
:
sgd
hyper_parameters
:
optimizer
:
class
:
sgd
learning_rate
:
0.01
strategy
:
async
trigram_d
:
1000
neg_num
:
4
fc_sizes
:
[
300
,
300
,
128
]
fc_acts
:
[
'
tanh'
,
'
tanh'
,
'
tanh'
]
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
mode
:
train_runner
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
train_runner
class
:
single_train
# num of epochs
epochs
:
4
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[
"
query"
,
"
doc_pos"
]
# feed vars of save inference
save_inference_fetch_varnames
:
[
"
cos_sim_0.tmp_0"
]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
2
-
name
:
infer_runner
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/2"
# load model path
inference
:
dirname
:
"
inference"
epoch_interval
:
4
feed_varnames
:
[
"
query"
,
"
doc_pos"
]
fetch_varnames
:
[
"
cos_sim_0.tmp_0"
]
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/match/dssm/model.py
浏览文件 @
9b3afd7c
...
...
@@ -22,45 +22,39 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
input
(
self
):
TRIGRAM_D
=
envs
.
get_global_env
(
"hyper_parameters.TRIGRAM_D"
,
None
,
self
.
_namespace
)
Neg
=
envs
.
get_global_env
(
"hyper_parameters.NEG"
,
None
,
self
.
_namespace
)
self
.
query
=
fluid
.
data
(
name
=
"query"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_pos
=
fluid
.
data
(
def
_init_hyper_parameters
(
self
):
self
.
trigram_d
=
envs
.
get_global_env
(
"hyper_parameters.trigram_d"
)
self
.
neg_num
=
envs
.
get_global_env
(
"hyper_parameters.neg_num"
)
self
.
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
)
self
.
hidden_acts
=
envs
.
get_global_env
(
"hyper_parameters.fc_acts"
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
query
=
fluid
.
data
(
name
=
"query"
,
shape
=
[
-
1
,
self
.
trigram_d
],
dtype
=
'float32'
,
lod_level
=
0
)
doc_pos
=
fluid
.
data
(
name
=
"doc_pos"
,
shape
=
[
-
1
,
TRIGRAM_D
],
shape
=
[
-
1
,
self
.
trigram_d
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_negs
=
[
if
is_infer
:
return
[
query
,
doc_pos
]
doc_negs
=
[
fluid
.
data
(
name
=
"doc_neg_"
+
str
(
i
),
shape
=
[
-
1
,
TRIGRAM_D
],
shape
=
[
-
1
,
self
.
trigram_d
],
dtype
=
"float32"
,
lod_level
=
0
)
for
i
in
range
(
Neg
)
lod_level
=
0
)
for
i
in
range
(
self
.
neg_num
)
]
self
.
_data_var
.
append
(
self
.
query
)
self
.
_data_var
.
append
(
self
.
doc_pos
)
for
input
in
self
.
doc_negs
:
self
.
_data_var
.
append
(
input
)
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
is_infer
=
False
):
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
hidden_acts
=
envs
.
get_global_env
(
"hyper_parameters.fc_acts"
,
None
,
self
.
_namespace
)
return
[
query
,
doc_pos
]
+
doc_negs
def
net
(
self
,
inputs
,
is_infer
=
False
):
def
fc
(
data
,
hidden_layers
,
hidden_acts
,
names
):
fc_inputs
=
[
data
]
for
i
in
range
(
len
(
hidden_layers
)):
...
...
@@ -77,71 +71,30 @@ class Model(ModelBase):
fc_inputs
.
append
(
out
)
return
fc_inputs
[
-
1
]
query_fc
=
fc
(
self
.
query
,
hidden_layers
,
hidden_acts
,
query_fc
=
fc
(
inputs
[
0
],
self
.
hidden_layers
,
self
.
hidden_acts
,
[
'query_l1'
,
'query_l2'
,
'query_l3'
])
doc_pos_fc
=
fc
(
self
.
doc_pos
,
hidden_layers
,
hidden_acts
,
doc_pos_fc
=
fc
(
inputs
[
1
],
self
.
hidden_layers
,
self
.
hidden_acts
,
[
'doc_pos_l1'
,
'doc_pos_l2'
,
'doc_pos_l3'
])
self
.
R_Q_D_p
=
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_pos_fc
)
R_Q_D_p
=
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_pos_fc
)
if
is_infer
:
self
.
_infer_results
[
"query_doc_sim"
]
=
R_Q_D_p
return
R_Q_D_ns
=
[]
for
i
,
doc_neg
in
enumerate
(
self
.
doc_negs
):
doc_neg_fc_i
=
fc
(
doc_neg
,
hidden_layers
,
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)
])
for
i
in
range
(
len
(
inputs
)
-
2
):
doc_neg_fc_i
=
fc
(
inputs
[
i
+
2
],
self
.
hidden_layers
,
self
.
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)
])
R_Q_D_ns
.
append
(
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_neg_fc_i
))
concat_Rs
=
fluid
.
layers
.
concat
(
input
=
[
self
.
R_Q_D_p
]
+
R_Q_D_ns
,
axis
=-
1
)
concat_Rs
=
fluid
.
layers
.
concat
(
input
=
[
R_Q_D_p
]
+
R_Q_D_ns
,
axis
=-
1
)
prob
=
fluid
.
layers
.
softmax
(
concat_Rs
,
axis
=
1
)
hit_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
4
,
1
])
loss
=
-
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log
(
hit_prob
))
self
.
avg_cost
=
fluid
.
layers
.
mean
(
x
=
loss
)
def
infer_results
(
self
):
self
.
_infer_results
[
'query_doc_sim'
]
=
self
.
R_Q_D_p
def
avg_loss
(
self
):
self
.
_cost
=
self
.
avg_cost
def
metrics
(
self
):
self
.
_metrics
[
"LOSS"
]
=
self
.
avg_cost
def
train_net
(
self
):
self
.
input
()
self
.
net
(
is_infer
=
False
)
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
)
return
optimizer
def
infer_input
(
self
):
TRIGRAM_D
=
envs
.
get_global_env
(
"hyper_parameters.TRIGRAM_D"
,
None
,
self
.
_namespace
)
self
.
query
=
fluid
.
data
(
name
=
"query"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_pos
=
fluid
.
data
(
name
=
"doc_pos"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
_infer_data_var
=
[
self
.
query
,
self
.
doc_pos
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
self
.
net
(
is_infer
=
True
)
self
.
infer_results
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
loss
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"LOSS"
]
=
avg_cost
models/match/dssm/synthetic_evaluate_reader.py
浏览文件 @
9b3afd7c
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
from
paddlerec.core.reader
import
Reader
class
Evaluate
Reader
(
Reader
):
class
Train
Reader
(
Reader
):
def
init
(
self
):
pass
...
...
models/match/multiview-simnet/config.yaml
浏览文件 @
9b3afd7c
...
...
@@ -11,49 +11,73 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
workspace
:
"
paddlerec.models.match.multiview-simnet"
reader
:
batch_size
:
2
class
:
"
{workspace}/evaluate_reader.py"
test_data_path
:
"
{workspace}/data/test"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# workspace
workspace
:
"
paddlerec.models.match.multiview-simnet"
epochs
:
2
workspace
:
"
paddlerec.models.match.multiview-simnet"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/train"
sparse_slots
:
"
1
2
3"
-
name
:
dataset_infer
# name
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/test"
sparse_slots
:
"
1
2"
reader
:
batch_size
:
2
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train"
dataset_class
:
"
DataLoader"
# hyper parameters of user-defined network
hyper_parameters
:
optimizer
:
class
:
Adam
learning_rate
:
0.0001
strategy
:
async
query_encoder
:
"
bow"
title_encoder
:
"
bow"
query_encode_dim
:
128
title_encode_dim
:
128
sparse_feature_dim
:
1000001
embedding_dim
:
128
hidden_size
:
128
margin
:
0.1
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
use_DataLoader
:
True
query_encoder
:
"
bow"
title_encoder
:
"
bow"
query_encode_dim
:
128
title_encode_dim
:
128
query_slots
:
1
title_slots
:
1
sparse_feature_dim
:
1000001
embedding_dim
:
128
hidden_size
:
128
learning_rate
:
0.0001
optimizer
:
adam
# select runner by name
mode
:
train_runner
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
train_runner
class
:
single_train
# num of epochs
epochs
:
2
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
1
-
name
:
infer_runner
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/0"
# load model path
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
1
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
1
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/match/multiview-simnet/model.py
浏览文件 @
9b3afd7c
...
...
@@ -99,143 +99,89 @@ class SimpleEncoderFactory(object):
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
query_encoder
=
envs
.
get_global_env
(
"hyper_parameters.query_encoder"
,
None
,
self
.
_namespace
)
title_encoder
=
envs
.
get_global_env
(
"hyper_parameters.title_encoder"
,
None
,
self
.
_namespace
)
query_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.query_encode_dim"
,
None
,
self
.
_namespace
)
title_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.title_encode_dim"
,
None
,
self
.
_namespace
)
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
self
.
_namespace
)
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
self
.
_namespace
)
factory
=
SimpleEncoderFactory
()
self
.
query_encoders
=
[
factory
.
create
(
query_encoder
,
query_encode_dim
)
for
i
in
range
(
query_slots
)
]
self
.
title_encoders
=
[
factory
.
create
(
title_encoder
,
title_encode_dim
)
for
i
in
range
(
title_slots
)
]
def
_init_hyper_parameters
(
self
):
self
.
query_encoder
=
envs
.
get_global_env
(
"hyper_parameters.query_encoder"
)
self
.
title_encoder
=
envs
.
get_global_env
(
"hyper_parameters.title_encoder"
)
self
.
query_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.query_encode_dim"
)
self
.
title_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.title_encode_dim"
)
self
.
emb_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
,
None
,
self
.
_namespace
)
"hyper_parameters.sparse_feature_dim"
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
)
self
.
emb_shape
=
[
self
.
emb_size
,
self
.
emb_dim
]
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
0.1
def
input
(
self
,
is_train
=
True
):
self
.
q_slots
=
[
fluid
.
data
(
name
=
"%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
query_encoders
))
]
self
.
pt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
if
is_train
==
False
:
return
self
.
q_slots
+
self
.
pt_slots
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
)
self
.
margin
=
envs
.
get_global_env
(
"hyper_parameters.margin"
)
self
.
nt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
def
net
(
self
,
input
,
is_infer
=
False
):
factory
=
SimpleEncoderFactory
()
self
.
q_slots
=
self
.
_sparse_data_var
[
0
:
1
]
self
.
query_encoders
=
[
factory
.
create
(
self
.
query_encoder
,
self
.
query_encode_dim
)
for
_
in
self
.
q_slots
]
return
self
.
q_slots
+
self
.
pt_slots
+
self
.
nt_slots
def
train_input
(
self
):
res
=
self
.
input
()
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
256
,
use_double_buffer
=
False
,
iterable
=
False
)
def
get_acc
(
self
,
x
,
y
):
less
=
tensor
.
cast
(
cf
.
less_than
(
x
,
y
),
dtype
=
'float32'
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
x
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
correct
=
fluid
.
layers
.
reduce_sum
(
less
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
acc
=
fluid
.
layers
.
elementwise_div
(
correct
,
total
)
return
acc
def
net
(
self
):
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
query
in
self
.
q_slots
]
pt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
nt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
nt_slots
]
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
nt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
nt_embs
)
]
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
nt_concat
=
fluid
.
layers
.
concat
(
nt_encodes
)
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
bias_attr
=
'q_fc.b'
)
self
.
pt_slots
=
self
.
_sparse_data_var
[
1
:
2
]
self
.
title_encoders
=
[
factory
.
create
(
self
.
title_encoder
,
self
.
title_encode_dim
)
]
pt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
pt_hid
=
fluid
.
layers
.
fc
(
pt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
# cosine of hidden layers
cos_pos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
if
is_infer
:
self
.
_infer_results
[
'query_pt_sim'
]
=
cos_pos
return
self
.
nt_slots
=
self
.
_sparse_data_var
[
2
:
3
]
nt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
nt_slots
]
nt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
nt_embs
)
]
nt_concat
=
fluid
.
layers
.
concat
(
nt_encodes
)
nt_hid
=
fluid
.
layers
.
fc
(
nt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
# cosine of hidden layers
cos_pos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
cos_neg
=
fluid
.
layers
.
cos_sim
(
q_hid
,
nt_hid
)
# pairwise hinge_loss
...
...
@@ -254,72 +200,16 @@ class Model(ModelBase):
input
=
loss_part2
,
shape
=
[
-
1
,
1
],
value
=
0.0
,
dtype
=
'float32'
),
loss_part2
)
self
.
avg
_cost
=
fluid
.
layers
.
mean
(
loss_part3
)
self
.
_cost
=
fluid
.
layers
.
mean
(
loss_part3
)
self
.
acc
=
self
.
get_acc
(
cos_neg
,
cos_pos
)
def
avg_loss
(
self
):
self
.
_cost
=
self
.
avg_cost
def
metrics
(
self
):
self
.
_metrics
[
"loss"
]
=
self
.
avg_cost
self
.
_metrics
[
"loss"
]
=
self
.
_cost
self
.
_metrics
[
"acc"
]
=
self
.
acc
def
train_net
(
self
):
self
.
train_input
()
self
.
net
()
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
return
optimizer
def
infer_input
(
self
):
res
=
self
.
input
(
is_train
=
False
)
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
# lookup embedding for each slot
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
query
in
self
.
q_slots
]
pt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
bias_attr
=
'q_fc.b'
)
pt_hid
=
fluid
.
layers
.
fc
(
pt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
# cosine of hidden layers
cos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
self
.
_infer_results
[
'query_pt_sim'
]
=
cos
def
get_acc
(
self
,
x
,
y
):
less
=
tensor
.
cast
(
cf
.
less_than
(
x
,
y
),
dtype
=
'float32'
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
x
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
correct
=
fluid
.
layers
.
reduce_sum
(
less
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
acc
=
fluid
.
layers
.
elementwise_div
(
correct
,
total
)
return
acc
models/match/readme.md
浏览文件 @
9b3afd7c
...
...
@@ -31,9 +31,21 @@
<img
align=
"center"
src=
"../../doc/imgs/multiview-simnet.png"
>
<p>
## 使用教程
### 训练
&预测
## 使用教程
(快速开始)
### 训练
```
shell
python
-m
paddlerec.run
-m
paddlerec.models.match.dssm
# dssm
python
-m
paddlerec.run
-m
paddlerec.models.match.multiview-simnet
# multiview-simnet
```
### 预测
```
shell
# 修改对应模型的config.yaml, workspace配置为当前目录的绝对路径
# 修改对应模型的config.yaml,mode配置infer_runner
# 示例: mode: train_runner -> mode: infer_runner
# infer_runner中 class配置为 class: single_infer
# 修改phase阶段为infer的配置,参照config注释
# 修改完config.yaml后 执行:
python
-m
paddlerec.run
-m
./config.yaml
# 以dssm为例
```
models/recall/gnn/config.yaml
浏览文件 @
9b3afd7c
...
...
@@ -11,46 +11,71 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
workspace
:
"
paddlerec.models.recall.gnn"
reader
:
batch_size
:
50
class
:
"
{workspace}/evaluate_reader.py"
test_data_path
:
"
{workspace}/data/test"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# workspace
workspace
:
"
paddlerec.models.recall.gnn"
epochs
:
2
workspace
:
"
paddlerec.models.recall.gnn"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
100
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/train"
data_converter
:
"
{workspace}/reader.py"
-
name
:
dataset_infer
# name
batch_size
:
50
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/test"
data_converter
:
"
{workspace}/evaluate_reader.py"
reader
:
batch_size
:
100
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train"
dataset_class
:
"
DataLoader"
# hyper parameters of user-defined network
hyper_parameters
:
optimizer
:
class
:
Adam
learning_rate
:
0.001
decay_steps
:
3
decay_rate
:
0.1
l2
:
0.00001
sparse_feature_number
:
43098
sparse_feature_dim
:
100
corpus_size
:
719470
gnn_propogation_steps
:
1
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
use_DataLoader
:
True
config_path
:
"
{workspace}/data/config.txt"
sparse_feature_dim
:
100
gnn_propogation_steps
:
1
learning_rate
:
0.001
l2
:
0.00001
decay_steps
:
3
decay_rate
:
0.1
optimizer
:
adam
# select runner by name
mode
:
train_runner
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
train_runner
class
:
single_train
# num of epochs
epochs
:
2
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
10
-
name
:
infer_runner
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/0"
# load model path
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
1
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
1
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/recall/gnn/
raw_
data/convert_data.py
→
models/recall/gnn/data/convert_data.py
浏览文件 @
9b3afd7c
文件已移动
models/recall/gnn/
raw_
data/download.py
→
models/recall/gnn/data/download.py
浏览文件 @
9b3afd7c
文件已移动
models/recall/gnn/
raw_
data/preprocess.py
→
models/recall/gnn/data/preprocess.py
浏览文件 @
9b3afd7c
文件已移动
models/recall/gnn/data_pr
ocess
.sh
→
models/recall/gnn/data_pr
epare
.sh
浏览文件 @
9b3afd7c
...
...
@@ -17,7 +17,7 @@
set
-e
echo
"begin to download data"
cd
raw_
data
&&
python download.py
cd
data
&&
python download.py
mkdir
diginetica
python preprocess.py
--dataset
diginetica
...
...
@@ -26,8 +26,10 @@ python convert_data.py --data_dir diginetica
cat
diginetica/train.txt |
wc
-l
>>
diginetica/config.txt
mkdir
train_data
mv
diginetica/train.txt train
_data
rm
-rf
train
&&
mkdir
train
mv
diginetica/train.txt train
mkdir
test_data
mv
diginetica/test.txt test_data
rm
-rf
test
&&
mkdir test
mv
diginetica/test.txt
test
mv
diginetica/config.txt ./config.txt
models/recall/gnn/evaluate_reader.py
浏览文件 @
9b3afd7c
...
...
@@ -21,10 +21,10 @@ from paddlerec.core.reader import Reader
from
paddlerec.core.utils
import
envs
class
Evaluate
Reader
(
Reader
):
class
Train
Reader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader
"
)
self
.
batch_size
=
envs
.
get_global_env
(
"dataset.dataset_infer.batch_size
"
)
self
.
input
=
[]
self
.
length
=
None
...
...
models/recall/gnn/model.py
浏览文件 @
9b3afd7c
...
...
@@ -25,74 +25,65 @@ from paddlerec.core.model import Model as ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
train_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
,
None
,
self
.
_namespace
)
def
_init_hyper_parameters
(
self
):
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
self
.
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_steps"
)
self
.
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_rate"
)
self
.
l2
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.l2"
)
self
.
dict_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
)
self
.
corpus_size
=
envs
.
get_global_env
(
"hyper_parameters.corpus_size"
)
def
config_read
(
self
,
config_path
=
None
):
if
config_path
is
None
:
raise
ValueError
(
"please set train.model.hyper_parameters.config_path at first"
)
with
open
(
config_path
,
"r"
)
as
fin
:
item_nums
=
int
(
fin
.
readline
().
strip
())
ins_nums
=
int
(
fin
.
readline
().
strip
())
return
item_nums
,
ins_nums
self
.
train_batch_size
=
envs
.
get_global_env
(
"dataset.dataset_train.batch_size"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"dataset.dataset_infer.batch_size"
)
def
input
(
self
,
bs
):
self
.
items
=
fluid
.
data
(
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
if
is_infer
:
bs
=
self
.
evaluate_batch_size
else
:
bs
=
self
.
train_batch_size
items
=
fluid
.
data
(
name
=
"items"
,
shape
=
[
bs
,
-
1
],
dtype
=
"int64"
)
# [batch_size, uniq_max]
se
lf
.
se
q_index
=
fluid
.
data
(
seq_index
=
fluid
.
data
(
name
=
"seq_index"
,
shape
=
[
bs
,
-
1
,
2
],
dtype
=
"int32"
)
# [batch_size, seq_max, 2]
self
.
last_index
=
fluid
.
data
(
last_index
=
fluid
.
data
(
name
=
"last_index"
,
shape
=
[
bs
,
2
],
dtype
=
"int32"
)
# [batch_size, 2]
self
.
adj_in
=
fluid
.
data
(
adj_in
=
fluid
.
data
(
name
=
"adj_in"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, seq_max]
self
.
adj_out
=
fluid
.
data
(
adj_out
=
fluid
.
data
(
name
=
"adj_out"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, seq_max]
self
.
mask
=
fluid
.
data
(
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
bs
,
-
1
,
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, 1]
self
.
label
=
fluid
.
data
(
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
bs
,
1
],
dtype
=
"int64"
)
# [batch_size, 1]
res
=
[
self
.
items
,
self
.
seq_index
,
self
.
last_index
,
self
.
adj_in
,
self
.
adj_out
,
self
.
mask
,
self
.
label
]
res
=
[
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
]
return
res
def
train_input
(
self
):
res
=
self
.
input
(
self
.
train_batch_size
)
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
if
is_infer
:
bs
=
self
.
evaluate_batch_size
else
:
bs
=
self
.
train_batch_size
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
256
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
items_num
,
hidden_size
,
step
,
bs
):
stdv
=
1.0
/
math
.
sqrt
(
hidden_size
)
stdv
=
1.0
/
math
.
sqrt
(
self
.
hidden_size
)
def
embedding_layer
(
input
,
table_name
,
...
...
@@ -100,22 +91,22 @@ class Model(ModelBase):
initializer_instance
=
None
):
emb
=
fluid
.
embedding
(
input
=
input
,
size
=
[
items_num
,
emb_dim
],
size
=
[
self
.
dict_size
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
table_name
,
initializer
=
initializer_instance
)
,
)
name
=
table_name
,
initializer
=
initializer_instance
))
return
emb
sparse_initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)
items_emb
=
embedding_layer
(
self
.
items
,
"emb"
,
hidden_size
,
items_emb
=
embedding_layer
(
inputs
[
0
],
"emb"
,
self
.
hidden_size
,
sparse_initializer
)
pre_state
=
items_emb
for
i
in
range
(
step
):
for
i
in
range
(
s
elf
.
s
tep
):
pre_state
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
x
=
pre_state
,
shape
=
[
bs
,
-
1
,
self
.
hidden_size
])
state_in
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_in"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -127,7 +118,7 @@ class Model(ModelBase):
state_out
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_out"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -137,33 +128,34 @@ class Model(ModelBase):
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_adj_in
=
layers
.
matmul
(
inputs
[
3
]
,
state_in
)
# [batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
# [batch_size, uniq_max, h]
inputs
[
4
]
,
state_out
)
# [batch_size, uniq_max, h]
gru_input
=
layers
.
concat
([
state_adj_in
,
state_adj_out
],
axis
=
2
)
gru_input
=
layers
.
reshape
(
x
=
gru_input
,
shape
=
[
-
1
,
hidden_size
*
2
])
x
=
gru_input
,
shape
=
[
-
1
,
self
.
hidden_size
*
2
])
gru_fc
=
layers
.
fc
(
input
=
gru_input
,
name
=
"gru_fc"
,
size
=
3
*
hidden_size
,
size
=
3
*
self
.
hidden_size
,
bias_attr
=
False
)
pre_state
,
_
,
_
=
fluid
.
layers
.
gru_unit
(
input
=
gru_fc
,
hidden
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
-
1
,
hidden_size
]),
size
=
3
*
hidden_size
)
x
=
pre_state
,
shape
=
[
-
1
,
self
.
hidden_size
]),
size
=
3
*
self
.
hidden_size
)
final_state
=
layers
.
reshape
(
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
seq
=
layers
.
gather_nd
(
final_state
,
self
.
seq_index
)
last
=
layers
.
gather_nd
(
final_state
,
self
.
last_index
)
final_state
=
layers
.
reshape
(
pre_state
,
shape
=
[
bs
,
-
1
,
self
.
hidden_size
])
seq
=
layers
.
gather_nd
(
final_state
,
inputs
[
1
])
last
=
layers
.
gather_nd
(
final_state
,
inputs
[
2
])
seq_fc
=
layers
.
fc
(
input
=
seq
,
name
=
"seq_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
num_flatten_dims
=
2
,
...
...
@@ -171,7 +163,7 @@ class Model(ModelBase):
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, seq_max, h]
last_fc
=
layers
.
fc
(
input
=
last
,
name
=
"last_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
num_flatten_dims
=
1
,
...
...
@@ -184,7 +176,7 @@ class Model(ModelBase):
add
=
layers
.
elementwise_add
(
seq_fc_t
,
last_fc
)
# [seq_max, batch_size, h]
b
=
layers
.
create_parameter
(
shape
=
[
hidden_size
],
shape
=
[
self
.
hidden_size
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
# [h]
add
=
layers
.
elementwise_add
(
add
,
b
)
# [seq_max, batch_size, h]
...
...
@@ -202,7 +194,7 @@ class Model(ModelBase):
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, seq_max, 1]
weight
*=
self
.
mask
weight
*=
inputs
[
5
]
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
# [batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
...
...
@@ -213,7 +205,7 @@ class Model(ModelBase):
final_attention_fc
=
layers
.
fc
(
input
=
final_attention
,
name
=
"final_attention_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
...
...
@@ -225,7 +217,7 @@ class Model(ModelBase):
# dtype="int64",
# persistable=True,
# name="all_vocab")
all_vocab
=
np
.
arange
(
1
,
items_num
).
reshape
((
-
1
)).
astype
(
'int32'
)
all_vocab
=
np
.
arange
(
1
,
self
.
dict_size
).
reshape
((
-
1
)).
astype
(
'int32'
)
all_vocab
=
fluid
.
layers
.
cast
(
x
=
fluid
.
layers
.
assign
(
all_vocab
),
dtype
=
'int64'
)
...
...
@@ -235,63 +227,32 @@ class Model(ModelBase):
name
=
"emb"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
size
=
[
items_num
,
hidden_size
])
# [all_vocab, h]
size
=
[
self
.
dict_size
,
self
.
hidden_size
])
# [all_vocab, h]
logits
=
layers
.
matmul
(
x
=
final_attention_fc
,
y
=
all_emb
,
transpose_y
=
True
)
# [batch_size, all_vocab]
softmax
=
layers
.
softmax_with_cross_entropy
(
logits
=
logits
,
label
=
self
.
label
)
# [batch_size, 1]
logits
=
logits
,
label
=
inputs
[
6
]
)
# [batch_size, 1]
self
.
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
self
.
label
,
k
=
20
)
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
inputs
[
6
]
,
k
=
20
)
def
avg_loss
(
self
):
self
.
_cost
=
self
.
loss
if
is_infer
:
self
.
_infer_results
[
'acc'
]
=
self
.
acc
self
.
_infer_results
[
'loss'
]
=
self
.
loss
return
def
metrics
(
self
):
self
.
_metrics
[
"LOSS"
]
=
self
.
loss
self
.
_metrics
[
"train_acc"
]
=
self
.
acc
def
train_net
(
self
):
self
.
train_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
train_batch_size
)
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
step_per_epoch
=
self
.
ins_num
//
self
.
train_batch_size
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.decay_steps"
,
None
,
self
.
_namespace
)
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.decay_rate"
,
None
,
self
.
_namespace
)
l2
=
envs
.
get_global_env
(
"hyper_parameters.l2"
,
None
,
self
.
_namespace
)
step_per_epoch
=
self
.
corpus_size
//
self
.
train_batch_size
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
decay_steps
*
step_per_epoch
,
decay_rate
=
decay_rate
),
learning_rate
=
self
.
learning_rate
,
decay_steps
=
self
.
decay_steps
*
step_per_epoch
,
decay_rate
=
self
.
decay_rate
),
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
l2
))
regularization_coeff
=
self
.
l2
))
return
optimizer
def
infer_input
(
self
):
self
.
_reader_namespace
=
"evaluate.reader"
res
=
self
.
input
(
self
.
evaluate_batch_size
)
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
evaluate_batch_size
)
self
.
_infer_results
[
'acc'
]
=
self
.
acc
self
.
_infer_results
[
'loss'
]
=
self
.
loss
models/recall/gnn/reader.py
浏览文件 @
9b3afd7c
...
...
@@ -23,9 +23,8 @@ from paddlerec.core.utils import envs
class
TrainReader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
batch_size
=
envs
.
get_global_env
(
"dataset.dataset_train.batch_size"
)
self
.
input
=
[]
self
.
length
=
None
...
...
models/recall/readme.md
浏览文件 @
9b3afd7c
...
...
@@ -57,8 +57,8 @@
<img
align=
"center"
src=
"../../doc/imgs/gnn.png"
>
<p>
## 使用教程
###
训练 预测
## 使用教程
(快速开始)
###
```
shell
python
-m
paddlerec.run
-m
paddlerec.models.recall.word2vec
# word2vec
python
-m
paddlerec.run
-m
paddlerec.models.recall.ssr
# ssr
...
...
@@ -67,6 +67,40 @@ python -m paddlerec.run -m paddlerec.models.recall.gnn # gnn
python
-m
paddlerec.run
-m
paddlerec.models.recall.ncf
# ncf
python
-m
paddlerec.run
-m
paddlerec.models.recall.youtube_dnn
# youtube_dnn
```
## 使用教程(复现论文)
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参,并使用提供的脚本下载对应数据集以及数据预处理。
| 模型 | batch_size | thread_num | epoch_num |
| :---: | :---: | :---: | :---: |
| Word2Vec | 100 | 5 | 5 |
| GNN | 100 | 1 | 30 |
| GRU4REC | 500 | 1 | 10 |
### 数据处理
参考每个模型目录数据下载&预处理脚本。
```
bash
sh data_prepare.sh
```
### 训练
```
bash
cd
modles/recall/gnn
# 进入选定好的召回模型的目录 以gnn为例
python
-m
paddlerec.run
-m
./config.yaml
# 自定义修改超参后,指定配置文件,使用自定义配置
```
### 预测
```
# 修改对应模型的config.yaml, workspace配置为当前目录的绝对路径
# 修改对应模型的config.yaml,mode配置infer_runner
# 示例: mode: train_runner -> mode: infer_runner
# infer_runner中 class配置为 class: single_infer
# 修改phase阶段为infer的配置,参照config注释
# 修改完config.yaml后 执行:
python -m paddlerec.run -m ./config.yaml # 以gnn为例
```
## 效果对比
### 模型效果列表
...
...
models/recall/word2vec/config.yaml
浏览文件 @
9b3afd7c
...
...
@@ -11,51 +11,70 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
workspace
:
"
paddlerec.models.recall.word2vec"
workspace
:
"
paddlerec.models.recall.word2vec"
evaluate_only
:
False
evaluate_model_path
:
"
"
reader
:
batch_size
:
50
class
:
"
{workspace}/w2v_evaluate_reader.py"
test_data_path
:
"
{workspace}/data/test"
word_id_dict_path
:
"
{workspace}/data/dict/word_id_dict.txt"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
100
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/train"
word_count_dict_path
:
"
{workspace}/data/dict/word_count_dict.txt"
data_converter
:
"
{workspace}/w2v_reader.py"
-
name
:
dataset_infer
# name
batch_size
:
50
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/test"
word_id_dict_path
:
"
{workspace}/data/dict/word_id_dict.txt"
data_converter
:
"
{workspace}/w2v_evaluate_reader.py"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
hyper_parameters
:
optimizer
:
learning_rate
:
1.0
decay_steps
:
100000
decay_rate
:
0.999
class
:
sgd
strategy
:
async
sparse_feature_number
:
354051
sparse_feature_dim
:
300
with_shuffle_batch
:
False
neg_num
:
5
window_size
:
5
# select runner by name
mode
:
train_runner
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
train_runner
class
:
single_train
# num of epochs
epochs
:
2
workspace
:
"
paddlerec.models.recall.word2vec"
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
10
-
name
:
infer_runner
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment/0"
# load model path
reader
:
batch_size
:
100
class
:
"
{workspace}/w2v_reader.py"
train_data_path
:
"
{workspace}/data/train"
word_count_dict_path
:
"
{workspace}/data/dict/word_count_dict.txt"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
sparse_feature_number
:
85
sparse_feature_dim
:
300
with_shuffle_batch
:
False
neg_num
:
5
window_size
:
5
learning_rate
:
1.0
decay_steps
:
100000
decay_rate
:
0.999
optimizer
:
sgd
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
1
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
1
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/recall/word2vec/
prepare_data
.sh
→
models/recall/word2vec/
data_prepare
.sh
浏览文件 @
9b3afd7c
...
...
@@ -22,16 +22,17 @@ tar xvf 1-billion-word-language-modeling-benchmark-r13output.tar
mv
1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/ raw_data/
# preprocess data
python preprocess.py
--build_dict
--build_dict_corpus_dir
raw_data/training-monolingual.tokenized.shuffled
--dict_path
raw_data/test_build_dict
python preprocess.py
--filter_corpus
--dict_path
raw_data/test_build_dict
--input_corpus_dir
raw_data/training-monolingual.tokenized.shuffled
--output_corpus_dir
raw_data/convert_text8
--min_count
5
--downsample
0.001
mkdir
thirdparty
mv
raw_data/test_build_dict thirdparty/
mv
raw_data/test_build_dict_word_to_id_ thirdparty/
python preprocess.py
--build_dict
--build_dict_corpus_dir
raw_data/training-monolingual.tokenized.shuffled
--dict_path
raw_data/word_count_dict.txt
python preprocess.py
--filter_corpus
--dict_path
raw_data/word_count_dict.txt
--input_corpus_dir
raw_data/training-monolingual.tokenized.shuffled
--output_corpus_dir
raw_data/convert_text8
--min_count
5
--downsample
0.001
mv
raw_data/word_count_dict.txt data/dict/
mv
raw_data/word_id_dict.txt data/dict/
python preprocess.py
--data_resplit
--input_corpus_dir
=
raw_data/convert_text8
--output_corpus_dir
=
train_data
rm
-rf
data/train/
*
rm
-rf
data/test/
*
python preprocess.py
--data_resplit
--input_corpus_dir
=
raw_data/convert_text8
--output_corpus_dir
=
data/train
# download test data
wget
--no-check-certificate
https://paddlerec.bj.bcebos.com/word2vec/test_dir.tar
tar
xzvf test_dir.tar
-C
raw_data
mv
raw_data/data/test_dir
test_data
/
mv
raw_data/data/test_dir
/
*
data/test
/
rm
-rf
raw_data
models/recall/word2vec/model.py
浏览文件 @
9b3afd7c
...
...
@@ -23,45 +23,50 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
input
(
self
):
neg_num
=
int
(
envs
.
get_global_env
(
"hyper_parameters.neg_num"
,
None
,
self
.
_namespace
))
self
.
input_word
=
fluid
.
data
(
def
_init_hyper_parameters
(
self
):
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
)
==
"CtrTrainer"
else
False
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
neg_num
=
envs
.
get_global_env
(
"hyper_parameters.neg_num"
)
self
.
with_shuffle_batch
=
envs
.
get_global_env
(
"hyper_parameters.with_shuffle_batch"
)
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
self
.
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_steps"
)
self
.
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_rate"
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
if
is_infer
:
analogy_a
=
fluid
.
data
(
name
=
"analogy_a"
,
shape
=
[
None
],
dtype
=
'int64'
)
analogy_b
=
fluid
.
data
(
name
=
"analogy_b"
,
shape
=
[
None
],
dtype
=
'int64'
)
analogy_c
=
fluid
.
data
(
name
=
"analogy_c"
,
shape
=
[
None
],
dtype
=
'int64'
)
analogy_d
=
fluid
.
data
(
name
=
"analogy_d"
,
shape
=
[
None
],
dtype
=
'int64'
)
return
[
analogy_a
,
analogy_b
,
analogy_c
,
analogy_d
]
input_word
=
fluid
.
data
(
name
=
"input_word"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
self
.
true_word
=
fluid
.
data
(
true_word
=
fluid
.
data
(
name
=
'true_label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
self
.
_data_var
.
append
(
self
.
input_word
)
self
.
_data_var
.
append
(
self
.
true_word
)
with_shuffle_batch
=
bool
(
int
(
envs
.
get_global_env
(
"hyper_parameters.with_shuffle_batch"
,
None
,
self
.
_namespace
)))
if
not
with_shuffle_batch
:
self
.
neg_word
=
fluid
.
data
(
name
=
"neg_label"
,
shape
=
[
None
,
neg_num
],
dtype
=
'int64'
)
self
.
_data_var
.
append
(
self
.
neg_word
)
if
self
.
with_shuffle_batch
:
return
[
input_word
,
true_word
]
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
neg_word
=
fluid
.
data
(
name
=
"neg_label"
,
shape
=
[
None
,
self
.
neg_num
],
dtype
=
'int64'
)
return
[
input_word
,
true_word
,
neg_word
]
def
net
(
self
):
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
neg_num
=
int
(
envs
.
get_global_env
(
"hyper_parameters.neg_num"
,
None
,
self
.
_namespace
))
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
with_shuffle_batch
=
bool
(
int
(
envs
.
get_global_env
(
"hyper_parameters.with_shuffle_batch"
,
None
,
self
.
_namespace
)))
def
net
(
self
,
inputs
,
is_infer
=
False
):
if
is_infer
:
self
.
infer_net
(
inputs
)
return
def
embedding_layer
(
input
,
table_name
,
...
...
@@ -71,8 +76,8 @@ class Model(ModelBase):
emb
=
fluid
.
embedding
(
input
=
input
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
size
=
[
sparse_feature_number
,
emb_dim
],
is_distributed
=
self
.
is_distributed
,
size
=
[
s
elf
.
s
parse_feature_number
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
table_name
,
initializer
=
initializer_instance
),
)
if
squeeze
:
...
...
@@ -80,44 +85,44 @@ class Model(ModelBase):
else
:
return
emb
init_width
=
0.5
/
sparse_feature_dim
init_width
=
0.5
/
s
elf
.
s
parse_feature_dim
emb_initializer
=
fluid
.
initializer
.
Uniform
(
-
init_width
,
init_width
)
emb_w_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
)
input_emb
=
embedding_layer
(
self
.
input_word
,
"emb"
,
sparse_feature_dim
,
input_emb
=
embedding_layer
(
inputs
[
0
],
"emb"
,
self
.
sparse_feature_dim
,
emb_initializer
,
True
)
true_emb_w
=
embedding_layer
(
self
.
true_word
,
"emb_w"
,
sparse_feature_dim
,
emb_w_initializer
,
True
)
true_emb_b
=
embedding_layer
(
self
.
true_word
,
"emb_b"
,
1
,
true_emb_w
=
embedding_layer
(
inputs
[
1
],
"emb_w"
,
self
.
sparse_feature_dim
,
emb_w_initializer
,
True
)
true_emb_b
=
embedding_layer
(
inputs
[
1
],
"emb_b"
,
1
,
emb_w_initializer
,
True
)
if
with_shuffle_batch
:
if
self
.
with_shuffle_batch
:
neg_emb_w_list
=
[]
for
i
in
range
(
neg_num
):
for
i
in
range
(
self
.
neg_num
):
neg_emb_w_list
.
append
(
fluid
.
contrib
.
layers
.
shuffle_batch
(
true_emb_w
))
# shuffle true_word
neg_emb_w_concat
=
fluid
.
layers
.
concat
(
neg_emb_w_list
,
axis
=
0
)
neg_emb_w
=
fluid
.
layers
.
reshape
(
neg_emb_w_concat
,
shape
=
[
-
1
,
neg_num
,
sparse_feature_dim
])
neg_emb_w_concat
,
shape
=
[
-
1
,
self
.
neg_num
,
self
.
sparse_feature_dim
])
neg_emb_b_list
=
[]
for
i
in
range
(
neg_num
):
for
i
in
range
(
self
.
neg_num
):
neg_emb_b_list
.
append
(
fluid
.
contrib
.
layers
.
shuffle_batch
(
true_emb_b
))
# shuffle true_word
neg_emb_b
=
fluid
.
layers
.
concat
(
neg_emb_b_list
,
axis
=
0
)
neg_emb_b_vec
=
fluid
.
layers
.
reshape
(
neg_emb_b
,
shape
=
[
-
1
,
neg_num
])
neg_emb_b
,
shape
=
[
-
1
,
self
.
neg_num
])
else
:
neg_emb_w
=
embedding_layer
(
self
.
neg_word
,
"emb_w"
,
sparse_feature_dim
,
emb_w_initializer
)
neg_emb_b
=
embedding_layer
(
self
.
neg_word
,
"emb_b"
,
1
,
neg_emb_w
=
embedding_layer
(
inputs
[
2
],
"emb_w"
,
self
.
sparse_feature_dim
,
emb_w_initializer
)
neg_emb_b
=
embedding_layer
(
inputs
[
2
]
,
"emb_b"
,
1
,
emb_w_initializer
)
neg_emb_b_vec
=
fluid
.
layers
.
reshape
(
neg_emb_b
,
shape
=
[
-
1
,
neg_num
])
neg_emb_b
,
shape
=
[
-
1
,
self
.
neg_num
])
true_logits
=
fluid
.
layers
.
elementwise_add
(
fluid
.
layers
.
reduce_sum
(
...
...
@@ -127,18 +132,22 @@ class Model(ModelBase):
true_emb_b
)
input_emb_re
=
fluid
.
layers
.
reshape
(
input_emb
,
shape
=
[
-
1
,
1
,
sparse_feature_dim
])
input_emb
,
shape
=
[
-
1
,
1
,
s
elf
.
s
parse_feature_dim
])
neg_matmul
=
fluid
.
layers
.
matmul
(
input_emb_re
,
neg_emb_w
,
transpose_y
=
True
)
neg_logits
=
fluid
.
layers
.
elementwise_add
(
fluid
.
layers
.
reshape
(
neg_matmul
,
shape
=
[
-
1
,
neg_num
]),
neg_emb_b_vec
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
true_logits
,
shape
=
[
-
1
,
1
],
value
=
1.0
,
dtype
=
'float32'
)
label_zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
true_logits
,
shape
=
[
-
1
,
neg_num
],
value
=
0.0
,
dtype
=
'float32'
)
neg_matmul_re
=
fluid
.
layers
.
reshape
(
neg_matmul
,
shape
=
[
-
1
,
self
.
neg_num
])
neg_logits
=
fluid
.
layers
.
elementwise_add
(
neg_matmul_re
,
neg_emb_b_vec
)
#nce loss
label_ones
=
fluid
.
layers
.
fill_constant
(
shape
=
[
fluid
.
layers
.
shape
(
true_logits
)[
0
],
1
],
value
=
1.0
,
dtype
=
'float32'
)
label_zeros
=
fluid
.
layers
.
fill_constant
(
shape
=
[
fluid
.
layers
.
shape
(
true_logits
)[
0
],
self
.
neg_num
],
value
=
0.0
,
dtype
=
'float32'
)
true_xent
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
true_logits
,
label_ones
)
...
...
@@ -149,7 +158,9 @@ class Model(ModelBase):
true_xent
,
dim
=
1
),
fluid
.
layers
.
reduce_sum
(
neg_xent
,
dim
=
1
))
self
.
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
global_right_cnt
=
fluid
.
layers
.
create_global_var
(
name
=
"global_right_cnt"
,
persistable
=
True
,
...
...
@@ -164,77 +175,33 @@ class Model(ModelBase):
value
=
0
)
global_right_cnt
.
stop_gradient
=
True
global_total_cnt
.
stop_gradient
=
True
def
avg_loss
(
self
):
self
.
_cost
=
self
.
avg_cost
def
metrics
(
self
):
self
.
_metrics
[
"LOSS"
]
=
self
.
avg_cost
def
train_net
(
self
):
self
.
input
()
self
.
net
()
self
.
avg_loss
()
self
.
metrics
()
self
.
_metrics
[
"LOSS"
]
=
avg_cost
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.decay_steps"
,
None
,
self
.
_namespace
)
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.decay_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
decay_steps
,
decay_rate
=
decay_rate
,
learning_rate
=
self
.
learning_rate
,
decay_steps
=
self
.
decay_steps
,
decay_rate
=
self
.
decay_rate
,
staircase
=
True
))
return
optimizer
def
analogy_input
(
self
):
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
self
.
analogy_a
=
fluid
.
data
(
name
=
"analogy_a"
,
shape
=
[
None
],
dtype
=
'int64'
)
self
.
analogy_b
=
fluid
.
data
(
name
=
"analogy_b"
,
shape
=
[
None
],
dtype
=
'int64'
)
self
.
analogy_c
=
fluid
.
data
(
name
=
"analogy_c"
,
shape
=
[
None
],
dtype
=
'int64'
)
self
.
analogy_d
=
fluid
.
data
(
name
=
"analogy_d"
,
shape
=
[
None
],
dtype
=
'int64'
)
self
.
_infer_data_var
=
[
self
.
analogy_a
,
self
.
analogy_b
,
self
.
analogy_c
,
self
.
analogy_d
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
def
infer_net
(
self
,
inputs
):
def
embedding_layer
(
input
,
table_name
,
initializer_instance
=
None
):
emb
=
fluid
.
embedding
(
input
=
input
,
size
=
[
s
parse_feature_number
,
sparse_feature_dim
],
size
=
[
s
elf
.
sparse_feature_number
,
self
.
sparse_feature_dim
],
param_attr
=
table_name
)
return
emb
self
.
analogy_input
()
all_label
=
np
.
arange
(
sparse_feature_number
).
reshape
(
sparse_feature_number
).
astype
(
'int32'
)
all_label
=
np
.
arange
(
self
.
sparse_feature_number
).
reshape
(
self
.
sparse_feature_number
).
astype
(
'int32'
)
self
.
all_label
=
fluid
.
layers
.
cast
(
x
=
fluid
.
layers
.
assign
(
all_label
),
dtype
=
'int64'
)
emb_all_label
=
embedding_layer
(
self
.
all_label
,
"emb"
)
emb_a
=
embedding_layer
(
self
.
analogy_a
,
"emb"
)
emb_b
=
embedding_layer
(
self
.
analogy_b
,
"emb"
)
emb_c
=
embedding_layer
(
self
.
analogy_c
,
"emb"
)
emb_a
=
embedding_layer
(
inputs
[
0
]
,
"emb"
)
emb_b
=
embedding_layer
(
inputs
[
1
]
,
"emb"
)
emb_c
=
embedding_layer
(
inputs
[
2
]
,
"emb"
)
target
=
fluid
.
layers
.
elementwise_add
(
fluid
.
layers
.
elementwise_sub
(
emb_b
,
emb_a
),
emb_c
)
...
...
@@ -245,8 +212,7 @@ class Model(ModelBase):
values
,
pred_idx
=
fluid
.
layers
.
topk
(
input
=
dist
,
k
=
4
)
label
=
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
self
.
analogy_d
,
axes
=
[
1
]),
expand_times
=
[
1
,
4
])
inputs
[
3
],
axes
=
[
1
]),
expand_times
=
[
1
,
4
])
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
label
,
shape
=
[
-
1
,
1
],
value
=
1.0
,
dtype
=
'float32'
)
right_cnt
=
fluid
.
layers
.
reduce_sum
(
input
=
fluid
.
layers
.
cast
(
...
...
models/recall/word2vec/preprocess.py
浏览文件 @
9b3afd7c
...
...
@@ -162,7 +162,7 @@ def filter_corpus(args):
if
r_value
>
keep_prob
:
continue
write_line
+=
str
(
idx
)
write_line
+=
"
,
"
write_line
+=
"
"
signal
=
True
if
signal
:
write_line
=
write_line
[:
-
1
]
+
"
\n
"
...
...
models/recall/word2vec/w2v_evaluate_reader.py
浏览文件 @
9b3afd7c
...
...
@@ -20,10 +20,10 @@ from paddlerec.core.reader import Reader
from
paddlerec.core.utils
import
envs
class
Evaluate
Reader
(
Reader
):
class
Train
Reader
(
Reader
):
def
init
(
self
):
dict_path
=
envs
.
get_global_env
(
"word_id_dict_path"
,
None
,
"evaluate.reader
"
)
dict_path
=
envs
.
get_global_env
(
"dataset.dataset_infer.word_id_dict_path
"
)
self
.
word_to_id
=
dict
()
self
.
id_to_word
=
dict
()
with
io
.
open
(
dict_path
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
...
...
@@ -75,6 +75,8 @@ class EvaluateReader(Reader):
def
generate_sample
(
self
,
line
):
def
reader
():
if
':'
in
line
:
pass
features
=
self
.
strip_lines
(
line
.
lower
(),
self
.
word_to_id
)
features
=
features
.
split
()
yield
[(
'analogy_a'
,
[
self
.
word_to_id
[
features
[
0
]]]),
...
...
models/recall/word2vec/w2v_reader.py
浏览文件 @
9b3afd7c
...
...
@@ -40,14 +40,12 @@ class NumpyRandomInt(object):
class
TrainReader
(
Reader
):
def
init
(
self
):
dict_path
=
envs
.
get_global_env
(
"word_count_dict_path"
,
None
,
"train.reader"
)
self
.
window_size
=
envs
.
get_global_env
(
"hyper_parameters.window_size"
,
None
,
"train.model"
)
self
.
neg_num
=
envs
.
get_global_env
(
"hyper_parameters.neg_num"
,
None
,
"train.model"
)
dict_path
=
envs
.
get_global_env
(
"dataset.dataset_train.word_count_dict_path"
)
self
.
window_size
=
envs
.
get_global_env
(
"hyper_parameters.window_size"
)
self
.
neg_num
=
envs
.
get_global_env
(
"hyper_parameters.neg_num"
)
self
.
with_shuffle_batch
=
envs
.
get_global_env
(
"hyper_parameters.with_shuffle_batch"
,
None
,
"train.model"
)
"hyper_parameters.with_shuffle_batch"
)
self
.
random_generator
=
NumpyRandomInt
(
1
,
self
.
window_size
+
1
)
self
.
cs
=
None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录