提交 907b2145 编写于 作者: O overlordmax

fix readme.md and config.yaml

上级 c311341f
...@@ -56,6 +56,7 @@ ...@@ -56,6 +56,7 @@
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | | Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) | | Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) | | Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) | | Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) | | Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) | | Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
......
...@@ -61,6 +61,7 @@ ...@@ -61,6 +61,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) | | 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) | | 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) | | 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) | | 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) | | 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) | | 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
......
...@@ -59,8 +59,8 @@ runner: ...@@ -59,8 +59,8 @@ runner:
device: cpu device: cpu
save_checkpoint_interval: 2 # save model interval of epochs save_checkpoint_interval: 2 # save model interval of epochs
save_inference_interval: 4 # save inference save_inference_interval: 4 # save inference
save_checkpoint_path: "increment_model" # save checkpoint path save_checkpoint_path: "increment_model_fibinet" # save checkpoint path
save_inference_path: "inference" # save inference path save_inference_path: "inference_fibinet" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path init_model_path: "" # load model path
...@@ -75,8 +75,8 @@ runner: ...@@ -75,8 +75,8 @@ runner:
device: gpu device: gpu
save_checkpoint_interval: 1 # save model interval of epochs save_checkpoint_interval: 1 # save model interval of epochs
save_inference_interval: 4 # save inference save_inference_interval: 4 # save inference
save_checkpoint_path: "increment_model" # save checkpoint path save_checkpoint_path: "increment_model_fibinet" # save checkpoint path
save_inference_path: "inference" # save inference path save_inference_path: "inference_fibinet" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path init_model_path: "" # load model path
...@@ -87,14 +87,14 @@ runner: ...@@ -87,14 +87,14 @@ runner:
class: infer class: infer
# device to run training or infer # device to run training or infer
device: cpu device: cpu
init_model_path: "increment_model" # load model path init_model_path: "increment_model_fibinet" # load model path
phases: [phase2] phases: [phase2]
- name: single_gpu_infer - name: single_gpu_infer
class: infer class: infer
# device to run training or infer # device to run training or infer
device: gpu device: gpu
init_model_path: "increment_model" # load model path init_model_path: "increment_model_fibinet" # load model path
phases: [phase2] phases: [phase2]
# runner will run all the phase in each epoch # runner will run all the phase in each epoch
......
...@@ -57,8 +57,8 @@ runner: ...@@ -57,8 +57,8 @@ runner:
device: cpu device: cpu
save_checkpoint_interval: 1 # save model interval of epochs save_checkpoint_interval: 1 # save model interval of epochs
save_inference_interval: 4 # save inference save_inference_interval: 4 # save inference
save_checkpoint_path: "increment_model" # save checkpoint path save_checkpoint_path: "increment_model_flen" # save checkpoint path
save_inference_path: "inference" # save inference path save_inference_path: "inference_flen" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path init_model_path: "" # load model path
...@@ -73,8 +73,8 @@ runner: ...@@ -73,8 +73,8 @@ runner:
device: gpu device: gpu
save_checkpoint_interval: 1 # save model interval of epochs save_checkpoint_interval: 1 # save model interval of epochs
save_inference_interval: 4 # save inference save_inference_interval: 4 # save inference
save_checkpoint_path: "increment_model" # save checkpoint path save_checkpoint_path: "increment_model_flen" # save checkpoint path
save_inference_path: "inference" # save inference path save_inference_path: "inference_flen" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path init_model_path: "" # load model path
...@@ -85,14 +85,14 @@ runner: ...@@ -85,14 +85,14 @@ runner:
class: infer class: infer
# device to run training or infer # device to run training or infer
device: cpu device: cpu
init_model_path: "increment_model" # load model path init_model_path: "increment_model_flen" # load model path
phases: [phase2] phases: [phase2]
- name: single_gpu_infer - name: single_gpu_infer
class: infer class: infer
# device to run training or infer # device to run training or infer
device: gpu device: gpu
init_model_path: "increment_model" # load model path init_model_path: "increment_model_flen" # load model path
phases: [phase2] phases: [phase2]
# runner will run all the phase in each epoch # runner will run all the phase in each epoch
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册