Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
907b2145
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
907b2145
编写于
7月 07, 2020
作者:
O
overlordmax
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix readme.md and config.yaml
上级
c311341f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
14 addition
and
12 deletion
+14
-12
README.md
README.md
+1
-0
README_CN.md
README_CN.md
+1
-0
models/rank/fibinet/config.yaml
models/rank/fibinet/config.yaml
+6
-6
models/rank/flen/config.yaml
models/rank/flen/config.yaml
+6
-6
未找到文件。
README.md
浏览文件 @
907b2145
...
@@ -56,6 +56,7 @@
...
@@ -56,6 +56,7 @@
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
| Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
README_CN.md
浏览文件 @
907b2145
...
@@ -61,6 +61,7 @@
...
@@ -61,6 +61,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
models/rank/fibinet/config.yaml
浏览文件 @
907b2145
...
@@ -59,8 +59,8 @@ runner:
...
@@ -59,8 +59,8 @@ runner:
device
:
cpu
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_checkpoint_path
:
"
increment_model
_fibinet
"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_path
:
"
inference
_fibinet
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
init_model_path
:
"
"
# load model path
...
@@ -75,8 +75,8 @@ runner:
...
@@ -75,8 +75,8 @@ runner:
device
:
gpu
device
:
gpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_checkpoint_path
:
"
increment_model
_fibinet
"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_path
:
"
inference
_fibinet
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
init_model_path
:
"
"
# load model path
...
@@ -87,14 +87,14 @@ runner:
...
@@ -87,14 +87,14 @@ runner:
class
:
infer
class
:
infer
# device to run training or infer
# device to run training or infer
device
:
cpu
device
:
cpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_fibinet
"
# load model path
phases
:
[
phase2
]
phases
:
[
phase2
]
-
name
:
single_gpu_infer
-
name
:
single_gpu_infer
class
:
infer
class
:
infer
# device to run training or infer
# device to run training or infer
device
:
gpu
device
:
gpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_fibinet
"
# load model path
phases
:
[
phase2
]
phases
:
[
phase2
]
# runner will run all the phase in each epoch
# runner will run all the phase in each epoch
...
...
models/rank/flen/config.yaml
浏览文件 @
907b2145
...
@@ -57,8 +57,8 @@ runner:
...
@@ -57,8 +57,8 @@ runner:
device
:
cpu
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_checkpoint_path
:
"
increment_model
_flen
"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_path
:
"
inference
_flen
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
init_model_path
:
"
"
# load model path
...
@@ -73,8 +73,8 @@ runner:
...
@@ -73,8 +73,8 @@ runner:
device
:
gpu
device
:
gpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_checkpoint_path
:
"
increment_model
_flen
"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_path
:
"
inference
_flen
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
init_model_path
:
"
"
# load model path
...
@@ -85,14 +85,14 @@ runner:
...
@@ -85,14 +85,14 @@ runner:
class
:
infer
class
:
infer
# device to run training or infer
# device to run training or infer
device
:
cpu
device
:
cpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_flen
"
# load model path
phases
:
[
phase2
]
phases
:
[
phase2
]
-
name
:
single_gpu_infer
-
name
:
single_gpu_infer
class
:
infer
class
:
infer
# device to run training or infer
# device to run training or infer
device
:
gpu
device
:
gpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_flen
"
# load model path
phases
:
[
phase2
]
phases
:
[
phase2
]
# runner will run all the phase in each epoch
# runner will run all the phase in each epoch
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录