未验证 提交 8256c4c6 编写于 作者: W wuzhihua 提交者: GitHub

Merge pull request #221 from vslyu/fix_customer_reader

add custom_read.md
......@@ -209,9 +209,13 @@ class RunnerBase(object):
if save_step_interval >= 1 and batch_id % save_step_interval == 0 and context[
"is_infer"] == False:
if context["fleet_mode"].upper() == "PS":
train_prog = context["model"][model_dict["name"]][
"main_program"]
if context["is_fleet"]:
if context["fleet_mode"].upper() == "PS":
train_prog = context["model"][model_dict[
"name"]]["main_program"]
else:
train_prog = context["model"][model_dict[
"name"]]["default_main_program"]
else:
train_prog = context["model"][model_dict["name"]][
"default_main_program"]
......
# PaddleRec 自定义数据集及Reader
用户自定义数据集及配置异步Reader,需要关注以下几个步骤:
* [数据集整理](#数据集整理)
* [在模型组网中加入输入占位符](#在模型组网中加入输入占位符)
* [Reader实现](#Reader的实现)
* [在yaml文件中配置Reader](#在yaml文件中配置reader)
我们以CTR-DNN模型为例,给出了从数据整理,变量定义,Reader写法,调试的完整历程。
* [数据及Reader示例-DNN](#数据及Reader示例-DNN)
## 数据集整理
PaddleRec支持模型自定义数据集。
关于数据的tips:
1. 数据量:
PaddleRec面向大规模数据设计,可以轻松支持亿级的数据读取,工业级的数据读写api:`dataset`在搜索、推荐、信息流等业务得到了充分打磨。
2. 文件类型:
支持任意直接可读的文本数据,`dataset`同时支持`.gz`格式的文本压缩数据,无需额外代码,可直接读取。数据样本应以`\n`为标志,按行组织。
3. 文件存放位置:
文件通常存放在训练节点本地,但同时,`dataset`支持使用`hadoop`远程读取数据,数据无需下载到本地,为dataset配置hadoop相关账户及地址即可。
4. 数据类型
Reader处理的是以行为单位的`string`数据,喂入网络的数据需要转为`int`,`float`的数值数据,不支持`string`喂入网络,不建议明文保存及处理训练数据。
5. Tips
Dataset模式下,训练线程与数据读取线程的关系强相关,为了多线程充分利用,`强烈建议将文件合理的拆为多个小文件`,尤其是在分布式训练场景下,可以均衡各个节点的数据量,同时加快数据的下载速度。
## 在模型组网中加入输入占位符
Reader读取文件后,产出的数据喂入网络,需要有占位符进行接收。占位符在Paddle中使用`fluid.data``fluid.layers.data`进行定义。`data`的定义可以参考[fluid.data](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/data_cn.html#data)以及[fluid.layers.data](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn/data_cn.html#data)
加入您希望输入三个数据,分别是维度32的数据A,维度变长的稀疏数据B,以及一个一维的标签数据C,并希望梯度可以经过该变量向前传递,则示例如下:
数据A的定义:
```python
var_a = fluid.data(name='A', shape= [-1, 32], dtype='float32')
```
数据B的定义,变长数据的使用可以参考[LoDTensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#cn-user-guide-lod-tensor)
```python
var_b = fluid.data(name='B', shape=[-1, 1], lod_level=1, dtype='int64')
```
数据C的定义:
```python
var_c = fluid.data(name='C', shape=[-1, 1], dtype='int32')
var_c.stop_gradient = False
```
当我们完成以上三个数据的定义后,在PaddleRec的模型定义中,还需将其加入model基类成员变量`self._data_var`
```python
self._data_var.append(var_a)
self._data_var.append(var_b)
self._data_var.append(var_c)
```
至此,我们完成了在组网中定义输入数据的工作。
## Reader的实现
### Reader的实现范式
Reader的逻辑需要一个单独的python文件进行描述。我们试写一个`test_reader.py`,实现的具体流程如下:
1. 首先我们需要引入Reader基类
```python
from paddlerec.core.reader import ReaderBase
```
2. 创建一个子类,继承Reader的基类,训练所需Reader命名为`TrainerReader`
```python
class Reader(ReaderBase):
def init(self):
pass
def generator_sample(self, line):
pass
```
3.`init(self)`函数中声明一些在数据读取中会用到的变量,必要时可以在`config.yaml`文件中配置变量,利用`env.get_global_env()`拿到。
比如,我们希望从yaml文件中读取一个数据预处理变量`avg=10`,目的是将数据A的数据缩小10倍,可以这样实现:
首先更改yaml文件,在某个hyper_parameters下加入该变量
```yaml
...
hyper_parameters:
reader:
avg: 10
...
```
再更改Reader的init函数
```python
from paddlerec.core.utils import envs
class Reader(ReaderBase):
def init(self):
self.avg = envs.get_global_env("avg", None, "hyper_parameters.reader")
def generator_sample(self, line):
pass
```
4. 继承并实现基类中的`generate_sample(self, line)`函数,逐行读取数据。
- 该函数应返回一个可以迭代的reader方法(带有yield的函数不再是一个普通的函数,而是一个生成器generator,成为了可以迭代的对象,等价于一个数组、链表、文件、字符串etc.)
- 在这个可以迭代的函数中,如示例代码中的`def reader()`,我们定义数据读取的逻辑。以行为单位的数据进行截取,转换及预处理。
- 最后,我们需要将数据整理为特定的格式,才能够被PaddleRec的Reader正确读取,并灌入的训练的网络中。简单来说,数据的输出顺序与我们在网络中创建的`inputs`必须是严格一一对应的,并转换为类似字典的形式。
示例: 假设数据ABC在文本数据中,每行以这样的形式存储:
```shell
0.1,0.2,0.3...3.0,3.1,3.2 \t 99999,99998,99997 \t 1 \n
```
则示例代码如下:
```python
from paddlerec.core.utils import envs
class Reader(ReaderBase):
def init(self):
self.avg = envs.get_global_env("avg", None, "hyper_parameters.reader")
def generator_sample(self, line):
def reader(self, line):
# 先分割 '\n', 再以 '\t'为标志分割为list
variables = (line.strip('\n')).split('\t')
# A是第一个元素,并且每个数据之间使用','分割
var_a = variables[0].split(',') # list
var_a = [float(i) / self.avg for i in var_a] # 将str数据转换为float
# B是第二个元素,同样以 ',' 分割
var_b = variables[1].split(',') # list
var_b = [int(i) for i in var_b] # 将str数据转换为int
# C是第三个元素, 只有一个元素,没有分割符
var_c = variables[2]
var_c = int(var_c) # 将str数据转换为int
var_c = [var_c] # 将单独的数据元素置入list中
# 将数据与数据名结合,组织为dict的形式
# 如下,output形式为{ A: var_a, B: var_b, C: var_c}
variable_name = ['A', 'B', 'C']
output = zip(variable_name, [var_a] + [var_b] + [var_c])
# 将数据输出,使用yield方法,将该函数变为了一个可迭代的对象
yield output
```
至此,我们完成了Reader的实现。
### 在yaml文件中配置Reader
在模型的yaml配置文件中,主要的修改是三个,如下
```yaml
reader:
batch_size: 2
class: "{workspace}/criteo_reader.py"
train_data_path: "{workspace}/data/train_data"
```
batch_size: 顾名思义,是小批量训练时的样本大小
class: 运行改模型所需reader的路径
train_data_path: 训练数据所在文件夹
reader_debug_mode: 测试reader语法,及输出是否符合预期的debug模式的开关
## 数据及Reader示例-DNN
### Criteo数据集格式
CTR-DNN训练及测试数据集选用[Display Advertising Challenge](https://www.kaggle.com/c/criteo-display-ad-challenge/)所用的Criteo数据集。该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。
每一行数据格式如下所示:
```bash
<label> <integer feature 1> ... <integer feature 13> <categorical feature 1> ... <categorical feature 26>
```
其中```<label>```表示广告是否被点击,点击用1表示,未点击用0表示。```<integer feature>```代表数值特征(连续特征),共有13个连续特征。```<categorical feature>```代表分类特征(离散特征),共有26个离散特征。相邻两个特征用```\t```分隔,缺失特征用空格表示。测试集中```<label>```特征已被移除。
### Criteo数据集的预处理
数据预处理共包括两步:
- 将原始训练集按9:1划分为训练集和验证集
- 数值特征(连续特征)需进行归一化处理,但需要注意的是,对每一个特征```<integer feature i>```,归一化时用到的最大值并不是用全局最大值,而是取排序后95%位置处的特征值作为最大值,同时保留极值。
### CTR网络输入的定义
正如前所述,Criteo数据集中,分为连续数据与离散(稀疏)数据,所以整体而言,CTR-DNN模型的数据输入层包括三个,分别是:`dense_input`用于输入连续数据,维度由超参数`dense_feature_dim`指定,数据类型是归一化后的浮点型数据。`sparse_input_ids`用于记录离散数据,在Criteo数据集中,共有26个slot,所以我们创建了名为`C1~C26`的26个稀疏参数输入,并设置`lod_level=1`,代表其为变长数据,数据类型为整数;最后是每条样本的`label`,代表了是否被点击,数据类型是整数,0代表负样例,1代表正样例。
在Paddle中数据输入的声明使用`paddle.fluid.layers.data()`,会创建指定类型的占位符,数据IO会依据此定义进行数据的输入。
稀疏参数输入的定义:
```python
def sparse_inputs():
ids = envs.get_global_env("hyper_parameters.sparse_inputs_slots", None)
sparse_input_ids = [
fluid.layers.data(name="S" + str(i),
shape=[1],
lod_level=1,
dtype="int64") for i in range(1, ids)
]
return sparse_input_ids
```
稠密参数输入的定义:
```python
def dense_input():
dim = envs.get_global_env("hyper_parameters.dense_input_dim", None)
dense_input_var = fluid.layers.data(name="D",
shape=[dim],
dtype="float32")
return dense_input_var
```
标签的定义:
```python
def label_input():
label = fluid.layers.data(name="click", shape=[1], dtype="int64")
return label
```
组合起来,正确的声明他们:
```python
self.sparse_inputs = sparse_inputs()
self.dense_input = dense_input()
self.label_input = label_input()
self._data_var.append(self.dense_input)
for input in self.sparse_inputs:
self._data_var.append(input)
self._data_var.append(self.label_input)
```
### Criteo Reader写法
```python
# 引入PaddleRec的Reader基类
from paddlerec.core.reader import ReaderBase
# 引入PaddleRec的读取yaml配置文件的方法
from paddlerec.core.utils import envs
# 定义TrainReader,需要继承 paddlerec.core.reader.Reader
class Reader(ReaderBase):
# 数据预处理逻辑,继承自基类
# 如果无需处理, 使用pass跳过该函数的执行
def init(self):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
self.cont_diff_ = [20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
self.hash_dim_ = envs.get_global_env("hyper_parameters.sparse_feature_number", None)
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
# 读取数据方法,继承自基类
# 实现可以迭代的reader函数,逐行处理数据
def generate_sample(self, line):
"""
Read the data line by line and process it as a dictionary
"""
def reader():
"""
This function needs to be implemented by the user, based on data format
"""
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == "":
dense_feature.append(0.0)
else:
dense_feature.append(
(float(features[idx]) - self.cont_min_[idx - 1]) /
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
label = [int(features[0])]
feature_name = ["D"]
for idx in self.categorical_range_:
feature_name.append("S" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return reader
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册