Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
7b9849ac
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7b9849ac
编写于
5月 27, 2020
作者:
X
xjqbest
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
f385e9ce
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
271 addition
and
58 deletion
+271
-58
core/factory.py
core/factory.py
+2
-1
core/trainers/single_trainer_yamlopt.py
core/trainers/single_trainer_yamlopt.py
+220
-0
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+18
-24
core/utils/envs.py
core/utils/envs.py
+0
-19
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+1
-1
models/rank/dnn/model.py
models/rank/dnn/model.py
+3
-6
run.py
run.py
+27
-7
未找到文件。
core/factory.py
浏览文件 @
7b9849ac
...
@@ -36,7 +36,8 @@ def trainer_registry():
...
@@ -36,7 +36,8 @@ def trainer_registry():
"tdm_single_trainer.py"
)
"tdm_single_trainer.py"
)
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_cluster_trainer.py"
)
"tdm_cluster_trainer.py"
)
trainers
[
"SingleTrainerYamlOpt"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer_yamlopt.py"
)
trainer_registry
()
trainer_registry
()
...
...
core/trainers/single_trainer_yamlopt.py
0 → 100755
浏览文件 @
7b9849ac
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleTrainerYamlOpt
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
dataloader_train
(
self
,
context
):
pass
def
dataset_train
(
self
,
context
):
pass
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
padding
=
0
reader
=
envs
.
path_adapter
(
"paddlerec.core.utils"
)
+
"/dataset_instance.py"
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
type_name
==
"QueueDataset"
:
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
get_inputs
()
dataset
.
set_use_var
(
inputs
)
break
else
:
pass
return
dataset
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
4
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
model
.
net
(
None
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
for
dataset
in
self
.
_env
[
"dataset"
]:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
self
.
_env
[
"epochs"
])
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"executor"
]:
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
self
.
_model
[
model_name
][
1
]
=
fluid
.
compiler
.
CompiledProgram
(
self
.
_model
[
model_name
][
1
]).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
model_class
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_dataset
[
reader_name
]
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
prorgram
=
self
.
_model
[
model_name
][
0
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
self
.
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
core/trainers/transpiler_trainer.py
浏览文件 @
7b9849ac
...
@@ -94,30 +94,24 @@ class TranspileTrainer(Trainer):
...
@@ -94,30 +94,24 @@ class TranspileTrainer(Trainer):
count
+=
1
count
+=
1
return
count
return
count
#def _get_dataset(self, state="TRAIN"):
def
_get_dataset
(
self
,
state
=
"TRAIN"
):
#if state == "TRAIN":
if
state
==
"TRAIN"
:
# inputs = self.model.get_inputs()
inputs
=
self
.
model
.
get_inputs
()
# namespace = "train.reader"
namespace
=
"train.reader"
# train_data_path = envs.get_global_env("train_data_path", None,
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
# namespace)
namespace
)
#else:
else
:
# inputs = self.model.get_infer_inputs()
inputs
=
self
.
model
.
get_infer_inputs
()
# namespace = "evaluate.reader"
namespace
=
"evaluate.reader"
# train_data_path = envs.get_global_env("test_data_path", None,
train_data_path
=
envs
.
get_global_env
(
"test_data_path"
,
None
,
# namespace)
namespace
)
def
_get_dataset
(
self
,
dataset_name
):
namespace
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
namespace
)
sparse_slots
=
envs
.
get_global_env
(
namespace
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
namespace
)
dense_slots
=
envs
.
get_global_env
(
namespace
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
namespace
+
"thread_num"
)
threads
=
int
(
envs
.
get_runtime_environ
(
"train.trainer.threads"
))
#threads = int(envs.get_runtime_environ("train.trainer.threads"))
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
namespace
)
#batch_size = envs.get_global_env("batch_size", None, namespace)
reader_class
=
envs
.
get_global_env
(
"class"
,
None
,
namespace
)
batch_size
=
envs
.
get_global_env
(
namespace
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
namespace
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
reader_class
=
envs
.
get_global_env
(
namespace
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
...
...
core/utils/envs.py
浏览文件 @
7b9849ac
...
@@ -20,8 +20,6 @@ import sys
...
@@ -20,8 +20,6 @@ import sys
global_envs
=
{}
global_envs
=
{}
#global_envs_raw = {}
def
flatten_environs
(
envs
,
separator
=
"."
):
def
flatten_environs
(
envs
,
separator
=
"."
):
flatten_dict
=
{}
flatten_dict
=
{}
assert
isinstance
(
envs
,
dict
)
assert
isinstance
(
envs
,
dict
)
...
@@ -63,22 +61,13 @@ def get_trainer():
...
@@ -63,22 +61,13 @@ def get_trainer():
def
set_global_envs
(
envs
):
def
set_global_envs
(
envs
):
assert
isinstance
(
envs
,
dict
)
assert
isinstance
(
envs
,
dict
)
# namespace_nests = []
#print(envs)
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
# if not isinstance(local_envs, dict):
# global_k = ".".join(namespace_nests)
# global_envs[global_k] = local_envs
# return
for
k
,
v
in
local_envs
.
items
():
for
k
,
v
in
local_envs
.
items
():
#print(k)
if
isinstance
(
v
,
dict
):
if
isinstance
(
v
,
dict
):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"executor"
)
and
isinstance
(
v
,
list
):
elif
(
k
==
"dataset"
or
k
==
"executor"
)
and
isinstance
(
v
,
list
):
#print("=======================")
#print([i for i in v])
for
i
in
v
:
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
raise
ValueError
(
"name must be in dataset list "
,
v
)
...
@@ -86,18 +75,10 @@ def set_global_envs(envs):
...
@@ -86,18 +75,10 @@ def set_global_envs(envs):
nests
.
append
(
k
)
nests
.
append
(
k
)
nests
.
append
(
i
[
"name"
])
nests
.
append
(
i
[
"name"
])
fatten_env_namespace
(
nests
,
i
)
fatten_env_namespace
(
nests
,
i
)
#global_k = ".".join(namespace_nests + [k, i["name"]])
#global_envs[global_k] = i
#print([i for i in v])
#global_k = ".".join(namespace_nests + [k])
#global_envs[global_k] = v
else
:
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
global_envs
[
global_k
]
=
v
global_envs
[
global_k
]
=
v
#for k, v in envs.items():
# fatten_env_namespace([k], v)
fatten_env_namespace
([],
envs
)
fatten_env_namespace
([],
envs
)
for
i
in
global_envs
:
for
i
in
global_envs
:
print
i
,
":"
,
global_envs
[
i
]
print
i
,
":"
,
global_envs
[
i
]
...
...
models/rank/dnn/config.yaml
浏览文件 @
7b9849ac
...
@@ -46,7 +46,7 @@ hyper_parameters:
...
@@ -46,7 +46,7 @@ hyper_parameters:
fc_sizes
:
[
512
,
256
,
128
,
32
]
fc_sizes
:
[
512
,
256
,
128
,
32
]
epoch
:
epoch
:
trainer_class
:
Single
trainer_class
:
single_yamlopt
save_checkpoint_interval
:
2
save_checkpoint_interval
:
2
save_inference_interval
:
4
save_inference_interval
:
4
save_checkpoint_path
:
"
increment"
save_checkpoint_path
:
"
increment"
...
...
models/rank/dnn/model.py
浏览文件 @
7b9849ac
...
@@ -27,12 +27,9 @@ class Model(ModelBase):
...
@@ -27,12 +27,9 @@ class Model(ModelBase):
def
_init_hyper_parameters
(
self
):
def
_init_hyper_parameters
(
self
):
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
self
.
is_distributed
=
True
if
envs
.
get_trainer
(
)
==
"CtrTrainer"
else
False
)
==
"CtrTrainer"
else
False
self
.
sparse_feature_number
=
1000001
#envs.get_global_env(
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
)
#"hyper_parameters.sparse_feature_number", None, self._namespace)
self
.
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
sparse_feature_dim
=
9
#envs.get_global_env(
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
)
#"hyper_parameters.sparse_feature_dim", None, self._namespace)
self
.
learning_rate
=
0.001
#envs.get_global_env(
#"hyper_parameters.learning_rate", None, self._namespace)
def
net
(
self
,
input
,
is_infer
=
False
):
def
net
(
self
,
input
,
is_infer
=
False
):
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
self
.
sparse_inputs
=
self
.
_sparse_data_var
[
1
:]
...
...
run.py
浏览文件 @
7b9849ac
...
@@ -28,7 +28,7 @@ device = ["CPU", "GPU"]
...
@@ -28,7 +28,7 @@ device = ["CPU", "GPU"]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
engine_choices
=
[
engine_choices
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER"
,
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER"
,
"TDM_CLUSTER"
"TDM_CLUSTER"
,
"SINGLE_YAMLOPT"
]
]
custom_model
=
[
'TDM'
]
custom_model
=
[
'TDM'
]
model_name
=
""
model_name
=
""
...
@@ -42,12 +42,14 @@ def engine_registry():
...
@@ -42,12 +42,14 @@ def engine_registry():
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"SINGLE_YAMLOPT"
]
=
single_yamlopt_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
def
get_inters_from_yaml
(
file
,
filter
):
def
get_inters_from_yaml
(
file
,
filter
s
):
with
open
(
file
,
'r'
)
as
rb
:
with
open
(
file
,
'r'
)
as
rb
:
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
...
@@ -55,16 +57,22 @@ def get_inters_from_yaml(file, filter):
...
@@ -55,16 +57,22 @@ def get_inters_from_yaml(file, filter):
inters
=
{}
inters
=
{}
for
k
,
v
in
flattens
.
items
():
for
k
,
v
in
flattens
.
items
():
if
k
.
startswith
(
filter
):
for
f
in
filters
:
inters
[
k
]
=
v
if
k
.
startswith
(
f
):
inters
[
k
]
=
v
return
inters
return
inters
def
get_engine
(
args
):
def
get_engine
(
args
):
transpiler
=
get_transpiler
()
transpiler
=
get_transpiler
()
run_extras
=
get_inters_from_yaml
(
args
.
model
,
"train."
)
run_extras
=
get_inters_from_yaml
(
args
.
model
,
[
"train."
,
"epoch."
])
engine
=
run_extras
.
get
(
"train.engine"
,
"single"
)
engine
=
run_extras
.
get
(
"train.engine"
,
None
)
if
engine
is
None
:
engine
=
run_extras
.
get
(
"epoch.trainer_class"
,
None
)
if
engine
is
None
:
engine
=
"single"
engine
=
engine
.
upper
()
engine
=
engine
.
upper
()
if
engine
not
in
engine_choices
:
if
engine
not
in
engine_choices
:
...
@@ -130,6 +138,18 @@ def single_engine(args):
...
@@ -130,6 +138,18 @@ def single_engine(args):
trainer
=
TrainerFactory
.
create
(
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
return
trainer
def
single_yamlopt_engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleTrainerYamlOpt"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single_yamlopt"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
def
cluster_engine
(
args
):
def
update_workspace
(
cluster_envs
):
def
update_workspace
(
cluster_envs
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录