Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
7b107087
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7b107087
编写于
6月 02, 2020
作者:
1
123malin
提交者:
GitHub
6月 02, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' into fasttext
上级
97cc5f45
5fe475a0
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
542 addition
and
2 deletion
+542
-2
models/rank/deepfm/data/get_slot_data.py
models/rank/deepfm/data/get_slot_data.py
+4
-2
models/rank/logistic_regression/__init__.py
models/rank/logistic_regression/__init__.py
+13
-0
models/rank/logistic_regression/config.yaml
models/rank/logistic_regression/config.yaml
+74
-0
models/rank/logistic_regression/data/download_preprocess.py
models/rank/logistic_regression/data/download_preprocess.py
+39
-0
models/rank/logistic_regression/data/get_slot_data.py
models/rank/logistic_regression/data/get_slot_data.py
+100
-0
models/rank/logistic_regression/data/preprocess.py
models/rank/logistic_regression/data/preprocess.py
+114
-0
models/rank/logistic_regression/data/run.sh
models/rank/logistic_regression/data/run.sh
+13
-0
models/rank/logistic_regression/data/sample_data/train/sample_train.txt
...gistic_regression/data/sample_data/train/sample_train.txt
+100
-0
models/rank/logistic_regression/model.py
models/rank/logistic_regression/model.py
+85
-0
未找到文件。
models/rank/deepfm/data/get_slot_data.py
浏览文件 @
7b107087
...
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
yaml
import
yaml
,
os
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
import
paddle.fluid.incubate.data_generator
as
dg
try
:
import
cPickle
as
pickle
except
ImportError
:
...
...
@@ -44,7 +46,7 @@ class TrainReader(dg.MultiSlotDataGenerator):
self
.
continuous_range_
=
range
(
1
,
14
)
self
.
categorical_range_
=
range
(
14
,
40
)
# load preprocessed feature dict
self
.
feat_dict_name
=
"
aid
_data/feat_dict_10.pkl2"
self
.
feat_dict_name
=
"
sample
_data/feat_dict_10.pkl2"
self
.
feat_dict_
=
pickle
.
load
(
open
(
self
.
feat_dict_name
,
'rb'
))
def
_process_line
(
self
,
line
):
...
...
models/rank/logistic_regression/__init__.py
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
models/rank/logistic_regression/config.yaml
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug
:
false
workspace
:
"
paddlerec.models.rank.deepfm"
dataset
:
-
name
:
train_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
-
name
:
infer_sample
type
:
QueueDataset
batch_size
:
5
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
label
feat_idx"
dense_slots
:
"
feat_value:39"
hyper_parameters
:
optimizer
:
class
:
SGD
learning_rate
:
0.0001
sparse_feature_number
:
1086460
sparse_feature_dim
:
9
num_field
:
39
reg
:
0.001
mode
:
train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner
:
-
name
:
train_runner
trainer_class
:
single_train
epochs
:
2
device
:
cpu
init_model_path
:
"
"
save_checkpoint_interval
:
1
save_inference_interval
:
1
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
print_interval
:
1
-
name
:
infer_runner
trainer_class
:
single_infer
epochs
:
1
device
:
cpu
init_model_path
:
"
increment/0"
print_interval
:
1
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
dataset_name
:
train_sample
thread_num
:
1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
models/rank/logistic_regression/data/download_preprocess.py
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
sys
LOCAL_PATH
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
TOOLS_PATH
=
os
.
path
.
join
(
LOCAL_PATH
,
".."
,
".."
,
"tools"
)
sys
.
path
.
append
(
TOOLS_PATH
)
from
paddlerec.tools.tools
import
download_file_and_uncompress
,
download_file
if
__name__
==
'__main__'
:
url
=
"https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz"
url2
=
"https://paddlerec.bj.bcebos.com/deepfm%2Ffeat_dict_10.pkl2"
print
(
"download and extract starting..."
)
download_file_and_uncompress
(
url
)
download_file
(
url2
,
"./aid_data/feat_dict_10.pkl2"
,
True
)
print
(
"download and extract finished"
)
print
(
"preprocessing..."
)
os
.
system
(
"python preprocess.py"
)
print
(
"preprocess done"
)
shutil
.
rmtree
(
"raw_data"
)
print
(
"done"
)
models/rank/logistic_regression/data/get_slot_data.py
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
yaml
import
os
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
import
paddle.fluid.incubate.data_generator
as
dg
try
:
import
cPickle
as
pickle
except
ImportError
:
import
pickle
class
TrainReader
(
dg
.
MultiSlotDataGenerator
):
def
__init__
(
self
,
config
):
dg
.
MultiSlotDataGenerator
.
__init__
(
self
)
if
os
.
path
.
isfile
(
config
):
with
open
(
config
,
'r'
)
as
rb
:
_config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
else
:
raise
ValueError
(
"reader config only support yaml"
)
def
init
(
self
):
self
.
cont_min_
=
[
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
self
.
cont_max_
=
[
5775
,
257675
,
65535
,
969
,
23159456
,
431037
,
56311
,
6047
,
29019
,
46
,
231
,
4008
,
7393
]
self
.
cont_diff_
=
[
self
.
cont_max_
[
i
]
-
self
.
cont_min_
[
i
]
for
i
in
range
(
len
(
self
.
cont_min_
))
]
self
.
continuous_range_
=
range
(
1
,
14
)
self
.
categorical_range_
=
range
(
14
,
40
)
# load preprocessed feature dict
self
.
feat_dict_name
=
"sample_data/feat_dict_10.pkl2"
self
.
feat_dict_
=
pickle
.
load
(
open
(
self
.
feat_dict_name
,
'rb'
))
def
_process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
feat_idx
=
[]
feat_value
=
[]
for
idx
in
self
.
continuous_range_
:
if
features
[
idx
]
==
''
:
feat_idx
.
append
(
0
)
feat_value
.
append
(
0.0
)
else
:
feat_idx
.
append
(
self
.
feat_dict_
[
idx
])
feat_value
.
append
(
(
float
(
features
[
idx
])
-
self
.
cont_min_
[
idx
-
1
])
/
self
.
cont_diff_
[
idx
-
1
])
for
idx
in
self
.
categorical_range_
:
if
features
[
idx
]
==
''
or
features
[
idx
]
not
in
self
.
feat_dict_
:
feat_idx
.
append
(
0
)
feat_value
.
append
(
0.0
)
else
:
feat_idx
.
append
(
self
.
feat_dict_
[
features
[
idx
]])
feat_value
.
append
(
1.0
)
label
=
[
int
(
features
[
0
])]
return
feat_idx
,
feat_value
,
label
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
feat_idx
,
feat_value
,
label
=
self
.
_process_line
(
line
)
s
=
""
for
i
in
[(
'feat_idx'
,
feat_idx
),
(
'feat_value'
,
feat_value
),
(
'label'
,
label
)]:
k
=
i
[
0
]
v
=
i
[
1
]
for
j
in
v
:
s
+=
" "
+
k
+
":"
+
str
(
j
)
print
s
.
strip
()
yield
None
return
data_iter
reader
=
TrainReader
(
"../config.yaml"
)
# run this file in original folder to find config.yaml
reader
.
init
()
reader
.
run_from_stdin
()
models/rank/logistic_regression/data/preprocess.py
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
from
collections
import
Counter
import
shutil
import
pickle
def
get_raw_data
():
if
not
os
.
path
.
isdir
(
'raw_data'
):
os
.
mkdir
(
'raw_data'
)
fin
=
open
(
'train.txt'
,
'r'
)
fout
=
open
(
'raw_data/part-0'
,
'w'
)
for
line_idx
,
line
in
enumerate
(
fin
):
if
line_idx
%
200000
==
0
and
line_idx
!=
0
:
fout
.
close
()
cur_part_idx
=
int
(
line_idx
/
200000
)
fout
=
open
(
'raw_data/part-'
+
str
(
cur_part_idx
),
'w'
)
fout
.
write
(
line
)
fout
.
close
()
fin
.
close
()
def
split_data
():
split_rate_
=
0.9
dir_train_file_idx_
=
'aid_data/train_file_idx.txt'
filelist_
=
[
'raw_data/part-%d'
%
x
for
x
in
range
(
len
(
os
.
listdir
(
'raw_data'
)))
]
if
not
os
.
path
.
exists
(
dir_train_file_idx_
):
train_file_idx
=
list
(
numpy
.
random
.
choice
(
len
(
filelist_
),
int
(
len
(
filelist_
)
*
split_rate_
),
False
))
with
open
(
dir_train_file_idx_
,
'w'
)
as
fout
:
fout
.
write
(
str
(
train_file_idx
))
else
:
with
open
(
dir_train_file_idx_
,
'r'
)
as
fin
:
train_file_idx
=
eval
(
fin
.
read
())
for
idx
in
range
(
len
(
filelist_
)):
if
idx
in
train_file_idx
:
shutil
.
move
(
filelist_
[
idx
],
'train_data'
)
else
:
shutil
.
move
(
filelist_
[
idx
],
'test_data'
)
def
get_feat_dict
():
freq_
=
10
dir_feat_dict_
=
'aid_data/feat_dict_'
+
str
(
freq_
)
+
'.pkl2'
continuous_range_
=
range
(
1
,
14
)
categorical_range_
=
range
(
14
,
40
)
if
not
os
.
path
.
exists
(
dir_feat_dict_
):
# Count the number of occurrences of discrete features
feat_cnt
=
Counter
()
with
open
(
'train.txt'
,
'r'
)
as
fin
:
for
line_idx
,
line
in
enumerate
(
fin
):
if
line_idx
%
100000
==
0
:
print
(
'generating feature dict'
,
line_idx
/
45000000
)
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
for
idx
in
categorical_range_
:
if
features
[
idx
]
==
''
:
continue
feat_cnt
.
update
([
features
[
idx
]])
# Only retain discrete features with high frequency
dis_feat_set
=
set
()
for
feat
,
ot
in
feat_cnt
.
items
():
if
ot
>=
freq_
:
dis_feat_set
.
add
(
feat
)
# Create a dictionary for continuous and discrete features
feat_dict
=
{}
tc
=
1
# Continuous features
for
idx
in
continuous_range_
:
feat_dict
[
idx
]
=
tc
tc
+=
1
for
feat
in
dis_feat_set
:
feat_dict
[
feat
]
=
tc
tc
+=
1
# Save dictionary
with
open
(
dir_feat_dict_
,
'wb'
)
as
fout
:
pickle
.
dump
(
feat_dict
,
fout
,
protocol
=
2
)
print
(
'args.num_feat '
,
len
(
feat_dict
)
+
1
)
if
__name__
==
'__main__'
:
if
not
os
.
path
.
isdir
(
'train_data'
):
os
.
mkdir
(
'train_data'
)
if
not
os
.
path
.
isdir
(
'test_data'
):
os
.
mkdir
(
'test_data'
)
if
not
os
.
path
.
isdir
(
'aid_data'
):
os
.
mkdir
(
'aid_data'
)
get_raw_data
()
split_data
()
get_feat_dict
()
print
(
'Done!'
)
models/rank/logistic_regression/data/run.sh
0 → 100644
浏览文件 @
7b107087
python download_preprocess.py
mkdir
slot_train_data
for
i
in
`
ls
./train_data
`
do
cat
train_data/
$i
| python get_slot_data.py
>
slot_train_data/
$i
done
mkdir
slot_test_data
for
i
in
`
ls
./test_data
`
do
cat
test_data/
$i
| python get_slot_data.py
>
slot_test_data/
$i
done
models/rank/logistic_regression/data/sample_data/train/sample_train.txt
0 → 100644
浏览文件 @
7b107087
此差异已折叠。
点击以展开。
models/rank/logistic_regression/model.py
0 → 100755
浏览文件 @
7b107087
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
paddle.fluid
as
fluid
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
Model
as
ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
_init_hyper_parameters
(
self
):
self
.
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
)
self
.
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
)
self
.
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
init_value_
=
0.1
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
# ------------------------- network input --------------------------
raw_feat_idx
=
self
.
_sparse_data_var
[
1
]
raw_feat_value
=
self
.
_dense_data_var
[
0
]
self
.
label
=
self
.
_sparse_data_var
[
0
]
feat_idx
=
raw_feat_idx
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
self
.
num_field
])
# None * num_field * 1
first_weights_re
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
self
.
sparse_feature_number
+
1
,
1
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
),
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
self
.
reg
)))
first_weights
=
fluid
.
layers
.
reshape
(
first_weights_re
,
shape
=
[
-
1
,
self
.
num_field
])
# None * num_field * 1
y_first_order
=
fluid
.
layers
.
reduce_sum
(
first_weights
*
feat_value
,
1
,
keep_dim
=
True
)
b_linear
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
0
))
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_first_order
+
b_linear
)
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
fluid
.
layers
.
cast
(
self
.
label
,
"float32"
))
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
label
=
label_int
,
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc_var
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录