Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
7a3ec4e6
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a3ec4e6
编写于
5月 19, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
for mat
上级
801dfd34
变更
55
显示空白变更内容
内联
并排
Showing
55 changed file
with
515 addition
and
491 deletion
+515
-491
core/engine/engine.py
core/engine/engine.py
+0
-1
core/engine/local_cluster.py
core/engine/local_cluster.py
+0
-1
core/metric.py
core/metric.py
+1
-1
core/metrics/auc_metrics.py
core/metrics/auc_metrics.py
+1
-1
core/trainers/__init__.py
core/trainers/__init__.py
+26
-0
core/trainers/ctr_coding_trainer.py
core/trainers/ctr_coding_trainer.py
+1
-1
core/trainers/ctr_modul_trainer.py
core/trainers/ctr_modul_trainer.py
+1
-1
core/trainers/online_learning_trainer.py
core/trainers/online_learning_trainer.py
+1
-1
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+4
-3
core/trainers/tdm_cluster_trainer.py
core/trainers/tdm_cluster_trainer.py
+0
-1
core/trainers/tdm_single_trainer.py
core/trainers/tdm_single_trainer.py
+0
-1
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+3
-3
core/utils/dataset_holder.py
core/utils/dataset_holder.py
+2
-12
core/utils/fs.py
core/utils/fs.py
+13
-11
core/utils/table.py
core/utils/table.py
+1
-1
models/contentunderstanding/classification/model.py
models/contentunderstanding/classification/model.py
+2
-2
models/contentunderstanding/classification/reader.py
models/contentunderstanding/classification/reader.py
+4
-3
models/contentunderstanding/tagspace/model.py
models/contentunderstanding/tagspace/model.py
+9
-11
models/contentunderstanding/tagspace/reader.py
models/contentunderstanding/tagspace/reader.py
+4
-5
models/match/dssm/model.py
models/match/dssm/model.py
+29
-28
models/match/dssm/synthetic_reader.py
models/match/dssm/synthetic_reader.py
+1
-1
models/match/multiview-simnet/evaluate_reader.py
models/match/multiview-simnet/evaluate_reader.py
+4
-3
models/match/multiview-simnet/generate_synthetic_data.py
models/match/multiview-simnet/generate_synthetic_data.py
+7
-3
models/match/multiview-simnet/model.py
models/match/multiview-simnet/model.py
+34
-31
models/match/multiview-simnet/reader.py
models/match/multiview-simnet/reader.py
+4
-3
models/multitask/esmm/esmm_infer_reader.py
models/multitask/esmm/esmm_infer_reader.py
+12
-11
models/multitask/esmm/esmm_reader.py
models/multitask/esmm/esmm_reader.py
+15
-13
models/multitask/esmm/model.py
models/multitask/esmm/model.py
+34
-36
models/multitask/mmoe/census_reader.py
models/multitask/mmoe/census_reader.py
+2
-2
models/multitask/mmoe/model.py
models/multitask/mmoe/model.py
+31
-31
models/multitask/share-bottom/census_reader.py
models/multitask/share-bottom/census_reader.py
+2
-2
models/multitask/share-bottom/model.py
models/multitask/share-bottom/model.py
+26
-26
models/rank/dcn/criteo_reader.py
models/rank/dcn/criteo_reader.py
+7
-7
models/rank/dcn/model.py
models/rank/dcn/model.py
+10
-11
models/rank/deepfm/criteo_reader.py
models/rank/deepfm/criteo_reader.py
+4
-3
models/rank/deepfm/model.py
models/rank/deepfm/model.py
+27
-27
models/rank/din/reader.py
models/rank/din/reader.py
+10
-15
models/rank/wide_deep/model.py
models/rank/wide_deep/model.py
+38
-29
models/rank/wide_deep/reader.py
models/rank/wide_deep/reader.py
+4
-3
models/rank/xdeepfm/criteo_reader.py
models/rank/xdeepfm/criteo_reader.py
+4
-4
models/rank/xdeepfm/model.py
models/rank/xdeepfm/model.py
+14
-14
models/recall/gnn/evaluate_reader.py
models/recall/gnn/evaluate_reader.py
+9
-7
models/recall/gnn/model.py
models/recall/gnn/model.py
+64
-64
models/recall/gnn/reader.py
models/recall/gnn/reader.py
+9
-7
models/recall/gru4rec/model.py
models/recall/gru4rec/model.py
+0
-2
models/recall/ssr/model.py
models/recall/ssr/model.py
+4
-6
models/recall/ssr/ssr_infer_reader.py
models/recall/ssr/ssr_infer_reader.py
+1
-3
models/recall/ssr/ssr_reader.py
models/recall/ssr/ssr_reader.py
+0
-2
models/recall/word2vec/preprocess.py
models/recall/word2vec/preprocess.py
+14
-16
models/recall/word2vec/w2v_evaluate_reader.py
models/recall/word2vec/w2v_evaluate_reader.py
+7
-8
models/recall/word2vec/w2v_reader.py
models/recall/word2vec/w2v_reader.py
+4
-4
models/treebased/tdm/model.py
models/treebased/tdm/model.py
+8
-8
models/treebased/tdm/tdm_evaluate_reader.py
models/treebased/tdm/tdm_evaluate_reader.py
+1
-0
models/treebased/tdm/tdm_reader.py
models/treebased/tdm/tdm_reader.py
+1
-0
setup.py
setup.py
+1
-1
未找到文件。
core/engine/engine.py
浏览文件 @
7a3ec4e6
...
...
@@ -29,4 +29,3 @@ class Engine:
@
abc
.
abstractmethod
def
run
(
self
):
pass
core/engine/local_cluster.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,7 +20,6 @@ import os
import
sys
import
subprocess
from
paddlerec.core.engine.engine
import
Engine
from
paddlerec.core.utils
import
envs
...
...
core/metric.py
浏览文件 @
7a3ec4e6
...
...
@@ -53,7 +53,7 @@ class Metric(object):
pass
@
abc
.
abstractmethod
def
get_result_to_string
(
self
):
def
__str__
(
self
):
"""
Return:
result(string) : calculate result with string format, for output
...
...
core/metrics/auc_metrics.py
浏览文件 @
7a3ec4e6
...
...
@@ -200,7 +200,7 @@ class AUCMetric(Metric):
""" """
return
self
.
_result
def
get_result_to_string
(
self
):
def
__str__
(
self
):
""" """
result
=
self
.
get_result
()
result_str
=
"%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "
\
...
...
core/trainers/__init__.py
浏览文件 @
7a3ec4e6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
trainer implement.
↗ (single/cluster) CtrTrainer
Trainer
↗ (for single training) SingleTrainer/TDMSingleTrainer
↘ TranspilerTrainer → (for cluster training) ClusterTrainer/TDMClusterTrainer
↘ (for online learning training) OnlineLearningTrainer
"""
core/trainers/ctr_coding_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,7 +23,7 @@ from paddlerec.core.utils import envs
from
paddlerec.core.trainer
import
Trainer
class
Ctr
Paddle
Trainer
(
Trainer
):
class
CtrTrainer
(
Trainer
):
"""R
"""
...
...
core/trainers/ctr_modul_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -72,7 +72,7 @@ def worker_numric_max(value, env="mpi"):
return
wroker_numric_opt
(
value
,
env
,
"max"
)
class
Ctr
Paddle
Trainer
(
Trainer
):
class
CtrTrainer
(
Trainer
):
"""R
"""
...
...
core/trainers/online_learning_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -31,7 +31,7 @@ from paddlerec.core.utils import envs
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
class
Cluster
Trainer
(
TranspileTrainer
):
class
OnlineLearning
Trainer
(
TranspileTrainer
):
def
processor_register
(
self
):
role
=
PaddleCloudRoleMaker
()
fleet
.
init
(
role
)
...
...
core/trainers/single_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -36,7 +36,8 @@ class SingleTrainer(TranspileTrainer):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
...
...
@@ -122,8 +123,8 @@ class SingleTrainer(TranspileTrainer):
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
...
...
core/trainers/tdm_cluster_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -27,7 +27,6 @@ from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import f
from
paddlerec.core.utils
import
envs
from
paddlerec.core.trainers.cluster_trainer
import
ClusterTrainer
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
core/trainers/tdm_single_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -24,7 +24,6 @@ import paddle.fluid as fluid
from
paddlerec.core.trainers.single_trainer
import
SingleTrainer
from
paddlerec.core.utils
import
envs
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
core/trainers/transpiler_trainer.py
浏览文件 @
7a3ec4e6
core/utils/dataset.py
→
core/utils/dataset
_holder
.py
浏览文件 @
7a3ec4e6
...
...
@@ -22,7 +22,7 @@ from paddlerec.core.utils import fs as fs
from
paddlerec.core.utils
import
util
as
util
class
Dataset
(
object
):
class
Dataset
Holder
(
object
):
"""
Dataset Base
"""
...
...
@@ -62,7 +62,7 @@ class Dataset(object):
pass
class
TimeSplitDataset
(
Dataset
):
class
TimeSplitDataset
Holder
(
DatasetHolder
):
"""
Dataset with time split dir. root_path/$DAY/$HOUR
"""
...
...
@@ -142,16 +142,6 @@ class TimeSplitDataset(Dataset):
data_time
=
data_time
+
datetime
.
timedelta
(
minutes
=
self
.
_split_interval
)
return
data_file_list
class
FluidTimeSplitDataset
(
TimeSplitDataset
):
"""
A Dataset with time split for PaddleFluid
"""
def
__init__
(
self
,
config
):
""" """
TimeSplitDataset
.
__init__
(
self
,
config
)
def
_alloc_dataset
(
self
,
file_list
):
""" """
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
self
.
_config
[
'dataset_type'
])
...
...
core/utils/fs.py
浏览文件 @
7a3ec4e6
...
...
@@ -95,11 +95,12 @@ class FileHandler(object):
"""
A Smart file handler. auto judge local/afs by path
"""
def
__init__
(
self
,
config
):
"""R
"""
if
'fs_name'
in
config
:
hadoop_home
=
"$HADOOP_HOME"
hadoop_home
=
"$HADOOP_HOME"
hdfs_configs
=
{
"hadoop.job.ugi"
:
config
[
'fs_ugi'
],
"fs.default.name"
:
config
[
'fs_name'
]
...
...
@@ -132,7 +133,8 @@ class FileHandler(object):
if
mode
.
find
(
'a'
)
>=
0
:
org_content
=
self
.
_hdfs_client
.
cat
(
dest_path
)
content
=
content
+
org_content
self
.
_local_fs_client
.
write
(
content
,
temp_local_file
,
mode
)
#fleet hdfs_client only support upload, so write tmp file
self
.
_local_fs_client
.
write
(
content
,
temp_local_file
,
mode
)
# fleet hdfs_client only support upload, so write tmp file
self
.
_hdfs_client
.
delete
(
dest_path
+
".tmp"
)
self
.
_hdfs_client
.
upload
(
dest_path
+
".tmp"
,
temp_local_file
)
self
.
_hdfs_client
.
delete
(
dest_path
+
".bak"
)
...
...
core/utils/table.py
浏览文件 @
7a3ec4e6
models/contentunderstanding/classification/model.py
浏览文件 @
7a3ec4e6
models/contentunderstanding/classification/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -38,6 +38,7 @@ class TrainReader(Reader):
data
=
[
int
(
i
)
for
i
in
data
]
label
=
[
int
(
i
)
for
i
in
label
]
seq_len
=
[
int
(
i
)
for
i
in
seq_len
]
print
>>
sys
.
stderr
,
str
([(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)])
print
>>
sys
.
stderr
,
str
([(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)])
yield
[(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)]
return
data_iter
models/contentunderstanding/tagspace/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,6 +18,7 @@ import paddle.fluid.layers.tensor as tensor
import
paddle.fluid.layers.control_flow
as
cf
from
paddlerec.core.model
import
Model
as
ModelBase
from
paddlerec.core.utils
import
envs
class
Model
(
ModelBase
):
...
...
@@ -25,14 +26,13 @@ class Model(ModelBase):
ModelBase
.
__init__
(
self
,
config
)
self
.
cost
=
None
self
.
metrics
=
{}
self
.
vocab_text_size
=
11447
#envs.get_global_env("vocab_text_size", None, self._namespace)
self
.
vocab_tag_size
=
4
#envs.get_global_env("vocab_tag_size", None, self._namespace)
self
.
emb_dim
=
10
#envs.get_global_env("emb_dim", None, self._namespace)
self
.
hid_dim
=
1000
#envs.get_global_env("hid_dim", None, self._namespace)
self
.
win_size
=
5
#envs.get_global_env("win_size", None, self._namespace)
self
.
margin
=
0.1
#envs.get_global_env("margin", None, self._namespace)
self
.
neg_size
=
3
#envs.get_global_env("neg_size", None, self._namespace)
print
self
.
emb_dim
self
.
vocab_text_size
=
envs
.
get_global_env
(
"vocab_text_size"
,
None
,
self
.
_namespace
)
self
.
vocab_tag_size
=
envs
.
get_global_env
(
"vocab_tag_size"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"emb_dim"
,
None
,
self
.
_namespace
)
self
.
hid_dim
=
envs
.
get_global_env
(
"hid_dim"
,
None
,
self
.
_namespace
)
self
.
win_size
=
envs
.
get_global_env
(
"win_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
envs
.
get_global_env
(
"margin"
,
None
,
self
.
_namespace
)
self
.
neg_size
=
envs
.
get_global_env
(
"neg_size"
,
None
,
self
.
_namespace
)
def
train_net
(
self
):
""" network definition """
...
...
@@ -96,11 +96,9 @@ class Model(ModelBase):
return
self
.
metrics
def
optimizer
(
self
):
learning_rate
=
0.01
#
envs.get_global_env("hyper_parameters.base_lr", None, self._namespace)
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.base_lr"
,
None
,
self
.
_namespace
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
learning_rate
)
#sgd_optimizer.minimize(avg_cost)
return
sgd_optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
train_net
()
models/contentunderstanding/tagspace/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,6 +19,7 @@ import numpy as np
from
paddlerec.core.reader
import
Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
...
...
@@ -46,9 +47,6 @@ class TrainReader(Reader):
neg_index
=
rand_i
neg_tag
.
append
(
neg_index
)
sum_n
+=
1
# if n > 0 and len(text) > n:
# #yield None
# return None, None, None
return
text
,
pos_tag
,
neg_tag
def
generate_sample
(
self
,
line
):
...
...
@@ -58,4 +56,5 @@ class TrainReader(Reader):
yield
None
return
yield
[(
'text'
,
text
),
(
'pos_tag'
,
pos_tag
),
(
'neg_tag'
,
neg_tag
)]
return
data_iter
models/match/dssm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -28,7 +28,8 @@ class Model(ModelBase):
self
.
query
=
fluid
.
data
(
name
=
"query"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_pos
=
fluid
.
data
(
name
=
"doc_pos"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_negs
=
[
fluid
.
data
(
name
=
"doc_neg_"
+
str
(
i
),
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
"float32"
,
lod_level
=
0
)
for
i
in
range
(
Neg
)]
self
.
doc_negs
=
[
fluid
.
data
(
name
=
"doc_neg_"
+
str
(
i
),
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
"float32"
,
lod_level
=
0
)
for
i
in
range
(
Neg
)]
self
.
_data_var
.
append
(
self
.
query
)
self
.
_data_var
.
append
(
self
.
doc_pos
)
for
input
in
self
.
doc_negs
:
...
...
@@ -38,7 +39,6 @@ class Model(ModelBase):
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
is_infer
=
False
):
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
hidden_acts
=
envs
.
get_global_env
(
"hyper_parameters.fc_acts"
,
None
,
self
.
_namespace
)
...
...
@@ -46,7 +46,7 @@ class Model(ModelBase):
def
fc
(
data
,
hidden_layers
,
hidden_acts
,
names
):
fc_inputs
=
[
data
]
for
i
in
range
(
len
(
hidden_layers
)):
xavier
=
fluid
.
initializer
.
Xavier
(
uniform
=
True
,
fan_in
=
fc_inputs
[
-
1
].
shape
[
1
],
fan_out
=
hidden_layers
[
i
])
xavier
=
fluid
.
initializer
.
Xavier
(
uniform
=
True
,
fan_in
=
fc_inputs
[
-
1
].
shape
[
1
],
fan_out
=
hidden_layers
[
i
])
out
=
fluid
.
layers
.
fc
(
input
=
fc_inputs
[
-
1
],
size
=
hidden_layers
[
i
],
act
=
hidden_acts
[
i
],
...
...
@@ -65,12 +65,13 @@ class Model(ModelBase):
R_Q_D_ns
=
[]
for
i
,
doc_neg
in
enumerate
(
self
.
doc_negs
):
doc_neg_fc_i
=
fc
(
doc_neg
,
hidden_layers
,
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)])
doc_neg_fc_i
=
fc
(
doc_neg
,
hidden_layers
,
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)])
R_Q_D_ns
.
append
(
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_neg_fc_i
))
concat_Rs
=
fluid
.
layers
.
concat
(
input
=
[
self
.
R_Q_D_p
]
+
R_Q_D_ns
,
axis
=-
1
)
prob
=
fluid
.
layers
.
softmax
(
concat_Rs
,
axis
=
1
)
hit_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
4
,
1
])
hit_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
4
,
1
])
loss
=
-
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log
(
hit_prob
))
self
.
avg_cost
=
fluid
.
layers
.
mean
(
x
=
loss
)
...
...
models/match/dssm/synthetic_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -37,7 +37,7 @@ class TrainReader(Reader):
neg_docs
=
[]
for
i
in
range
(
len
(
features
)
-
2
):
feature_names
.
append
(
'doc_neg_'
+
str
(
i
))
neg_docs
.
append
(
map
(
float
,
features
[
i
+
2
].
split
(
','
)))
neg_docs
.
append
(
map
(
float
,
features
[
i
+
2
].
split
(
','
)))
yield
zip
(
feature_names
,
[
query
]
+
[
pos_doc
]
+
neg_docs
)
...
...
models/match/multiview-simnet/evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -51,4 +51,5 @@ class EvaluateReader(Reader):
else
:
output
[
index
][
1
].
append
(
padding
)
yield
output
return
data_iter
models/match/multiview-simnet/generate_synthetic_data.py
浏览文件 @
7a3ec4e6
...
...
@@ -14,10 +14,12 @@
import
random
class
Dataset
:
def
__init__
(
self
):
pass
class
SyntheticDataset
(
Dataset
):
def
__init__
(
self
,
sparse_feature_dim
,
query_slot_num
,
title_slot_num
,
dataset_size
=
10000
):
# ids are randomly generated
...
...
@@ -50,7 +52,8 @@ class SyntheticDataset(Dataset):
for
i
in
range
(
self
.
title_slot_num
):
nt_slot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
nt_slot
=
[
str
(
fea
)
+
':'
+
str
(
i
+
self
.
query_slot_num
+
self
.
title_slot_num
)
for
fea
in
nt_slot
]
nt_slot
=
[
str
(
fea
)
+
':'
+
str
(
i
+
self
.
query_slot_num
+
self
.
title_slot_num
)
for
fea
in
nt_slot
]
neg_title_slots
+=
nt_slot
yield
query_slots
+
pos_title_slots
+
neg_title_slots
else
:
...
...
@@ -67,6 +70,7 @@ class SyntheticDataset(Dataset):
def
test
(
self
):
return
self
.
_reader_creator
(
False
)
if
__name__
==
'__main__'
:
sparse_feature_dim
=
1000001
query_slots
=
1
...
...
models/match/multiview-simnet/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,6 +19,7 @@ import paddle.fluid.layers.control_flow as cf
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
Model
as
ModelBase
class
BowEncoder
(
object
):
""" bow-encoder """
...
...
@@ -94,6 +95,7 @@ class SimpleEncoderFactory(object):
rnn_encode
=
GrnnEncoder
(
hidden_size
=
enc_hid_size
)
return
rnn_encode
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
...
...
@@ -140,7 +142,8 @@ class Model(ModelBase):
self
.
nt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
...
...
models/match/multiview-simnet/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -54,4 +54,5 @@ class TrainReader(Reader):
else
:
output
[
index
][
1
].
append
(
padding
)
yield
output
return
data_iter
models/multitask/esmm/esmm_infer_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,14 +18,14 @@ from collections import defaultdict
from
paddlerec.core.reader
import
Reader
class
EvaluateReader
(
Reader
):
def
init
(
self
):
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
'205'
,
'206'
,
'207'
,
'210'
,
'216'
,
'508'
,
'509'
,
'702'
,
'853'
,
'301'
]
self
.
all_field_id_dict
=
defaultdict
(
int
)
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
def
generate_sample
(
self
,
line
):
"""
...
...
@@ -41,10 +41,10 @@ class EvaluateReader(Reader):
cvr
=
int
(
features
[
2
])
padding
=
0
output
=
[(
field_id
,[])
for
field_id
in
self
.
all_field_id_dict
]
output
=
[(
field_id
,
[])
for
field_id
in
self
.
all_field_id_dict
]
for
elem
in
features
[
4
:]:
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
if
field_id
not
in
self
.
all_field_id_dict
:
continue
self
.
all_field_id_dict
[
field_id
][
0
]
=
True
...
...
@@ -52,7 +52,7 @@ class EvaluateReader(Reader):
output
[
index
][
1
].
append
(
int
(
feat_id
))
for
field_id
in
self
.
all_field_id_dict
:
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
if
visited
:
self
.
all_field_id_dict
[
field_id
][
0
]
=
False
else
:
...
...
@@ -60,4 +60,5 @@ class EvaluateReader(Reader):
output
.
append
((
'ctr'
,
[
ctr
]))
output
.
append
((
'cvr'
,
[
cvr
]))
yield
output
return
reader
models/multitask/esmm/esmm_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -21,11 +21,12 @@ from paddlerec.core.reader import Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
'205'
,
'206'
,
'207'
,
'210'
,
'216'
,
'508'
,
'509'
,
'702'
,
'853'
,
'301'
]
self
.
all_field_id_dict
=
defaultdict
(
int
)
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
def
generate_sample
(
self
,
line
):
"""
...
...
@@ -37,25 +38,25 @@ class TrainReader(Reader):
This function needs to be implemented by the user, based on data format
"""
features
=
line
.
strip
().
split
(
','
)
#ctr = list(map(int, features[1]))
#cvr = list(map(int, features[2]))
#
ctr = list(map(int, features[1]))
#
cvr = list(map(int, features[2]))
ctr
=
int
(
features
[
1
])
cvr
=
int
(
features
[
2
])
padding
=
0
output
=
[(
field_id
,[])
for
field_id
in
self
.
all_field_id_dict
]
output
=
[(
field_id
,
[])
for
field_id
in
self
.
all_field_id_dict
]
for
elem
in
features
[
4
:]:
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
if
field_id
not
in
self
.
all_field_id_dict
:
continue
self
.
all_field_id_dict
[
field_id
][
0
]
=
True
index
=
self
.
all_field_id_dict
[
field_id
][
1
]
#
feat_id = list(map(int, feat_id))
#
feat_id = list(map(int, feat_id))
output
[
index
][
1
].
append
(
int
(
feat_id
))
for
field_id
in
self
.
all_field_id_dict
:
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
if
visited
:
self
.
all_field_id_dict
[
field_id
][
0
]
=
False
else
:
...
...
@@ -63,4 +64,5 @@ class TrainReader(Reader):
output
.
append
((
'ctr'
,
[
ctr
]))
output
.
append
((
'cvr'
,
[
cvr
]))
yield
output
return
reader
models/multitask/esmm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,13 +23,14 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
fc
(
self
,
tag
,
data
,
out_dim
,
active
=
'prelu'
):
def
fc
(
self
,
tag
,
data
,
out_dim
,
active
=
'prelu'
):
init_stddev
=
1.0
scales
=
1.0
/
np
.
sqrt
(
data
.
shape
[
1
])
p_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
'%s_weight'
%
tag
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
init_stddev
*
scales
))
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
init_stddev
*
scales
))
b_attr
=
fluid
.
ParamAttr
(
name
=
'%s_bias'
%
tag
,
initializer
=
fluid
.
initializer
.
Constant
(
0.1
))
...
...
@@ -37,13 +38,13 @@ class Model(ModelBase):
size
=
out_dim
,
act
=
active
,
param_attr
=
p_attr
,
bias_attr
=
b_attr
,
bias_attr
=
b_attr
,
name
=
tag
)
return
out
def
input_data
(
self
):
sparse_input_ids
=
[
fluid
.
data
(
name
=
"field_"
+
str
(
i
),
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
for
i
in
range
(
0
,
23
)
fluid
.
data
(
name
=
"field_"
+
str
(
i
),
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
for
i
in
range
(
0
,
23
)
]
label_ctr
=
fluid
.
data
(
name
=
"ctr"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
)
label_cvr
=
fluid
.
data
(
name
=
"cvr"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
)
...
...
@@ -62,10 +63,11 @@ class Model(ModelBase):
size
=
[
vocab_size
,
embed_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
'dis_emb'
,
learning_rate
=
5
,
initializer
=
fluid
.
initializer
.
Xavier
(
fan_in
=
embed_size
,
fan_out
=
embed_size
)
initializer
=
fluid
.
initializer
.
Xavier
(
fan_in
=
embed_size
,
fan_out
=
embed_size
)
),
is_sparse
=
True
)
field_emb
=
fluid
.
layers
.
sequence_pool
(
input
=
feat_emb
,
pool_type
=
'sum'
)
field_emb
=
fluid
.
layers
.
sequence_pool
(
input
=
feat_emb
,
pool_type
=
'sum'
)
emb
.
append
(
field_emb
)
concat_emb
=
fluid
.
layers
.
concat
(
emb
,
axis
=
1
)
...
...
@@ -78,7 +80,7 @@ class Model(ModelBase):
# cvr
cvr_fc1
=
self
.
fc
(
'cvr_fc1'
,
concat_emb
,
200
,
active
)
cvr_fc2
=
self
.
fc
(
'cvr_fc2'
,
cvr_fc1
,
80
,
active
)
cvr_out
=
self
.
fc
(
'cvr_out'
,
cvr_fc2
,
2
,
'softmax'
)
cvr_out
=
self
.
fc
(
'cvr_out'
,
cvr_fc2
,
2
,
'softmax'
)
ctr_clk
=
inputs
[
-
2
]
ctcvr_buy
=
inputs
[
-
1
]
...
...
@@ -87,7 +89,7 @@ class Model(ModelBase):
cvr_prop_one
=
fluid
.
layers
.
slice
(
cvr_out
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
ctcvr_prop_one
=
fluid
.
layers
.
elementwise_mul
(
ctr_prop_one
,
cvr_prop_one
)
ctcvr_prop
=
fluid
.
layers
.
concat
(
input
=
[
1
-
ctcvr_prop_one
,
ctcvr_prop_one
],
axis
=
1
)
ctcvr_prop
=
fluid
.
layers
.
concat
(
input
=
[
1
-
ctcvr_prop_one
,
ctcvr_prop_one
],
axis
=
1
)
auc_ctr
,
batch_auc_ctr
,
auc_states_ctr
=
fluid
.
layers
.
auc
(
input
=
ctr_out
,
label
=
ctr_clk
)
auc_ctcvr
,
batch_auc_ctcvr
,
auc_states_ctcvr
=
fluid
.
layers
.
auc
(
input
=
ctcvr_prop
,
label
=
ctcvr_buy
)
...
...
@@ -97,25 +99,21 @@ class Model(ModelBase):
self
.
_infer_results
[
"AUC_ctcvr"
]
=
auc_ctcvr
return
loss_ctr
=
fluid
.
layers
.
cross_entropy
(
input
=
ctr_out
,
label
=
ctr_clk
)
loss_ctcvr
=
fluid
.
layers
.
cross_entropy
(
input
=
ctcvr_prop
,
label
=
ctcvr_buy
)
cost
=
loss_ctr
+
loss_ctcvr
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"AUC_ctr"
]
=
auc_ctr
self
.
_metrics
[
"BATCH_AUC_ctr"
]
=
batch_auc_ctr
self
.
_metrics
[
"AUC_ctcvr"
]
=
auc_ctcvr
self
.
_metrics
[
"BATCH_AUC_ctcvr"
]
=
batch_auc_ctcvr
def
train_net
(
self
):
input_data
=
self
.
input_data
()
self
.
net
(
input_data
)
def
infer_net
(
self
):
self
.
_infer_data_var
=
self
.
input_data
()
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
...
...
models/multitask/mmoe/census_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -43,8 +43,8 @@ class TrainReader(Reader):
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
#label_income = np.array(label_income)
#label_marital = np.array(label_marital)
#
label_income = np.array(label_income)
#
label_marital = np.array(label_marital)
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
...
...
models/multitask/mmoe/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -49,8 +49,7 @@ class Model(ModelBase):
name
=
'expert_'
+
str
(
i
))
expert_outputs
.
append
(
expert_output
)
expert_concat
=
fluid
.
layers
.
concat
(
expert_outputs
,
axis
=
1
)
expert_concat
=
fluid
.
layers
.
reshape
(
expert_concat
,[
-
1
,
expert_num
,
expert_size
])
expert_concat
=
fluid
.
layers
.
reshape
(
expert_concat
,
[
-
1
,
expert_num
,
expert_size
])
# g^{k}(x) = activation(W_{gk} * x + b), where activation is softmax according to the paper
output_layers
=
[]
...
...
@@ -78,19 +77,22 @@ class Model(ModelBase):
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
avg_cost_income
=
fluid
.
layers
.
mean
(
x
=
cost_income
)
avg_cost_marital
=
fluid
.
layers
.
mean
(
x
=
cost_marital
)
...
...
@@ -103,10 +105,8 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC_marital"
]
=
auc_marital
self
.
_metrics
[
"BATCH_AUC_marital"
]
=
batch_auc_2
def
train_net
(
self
):
self
.
MMOE
()
def
infer_net
(
self
):
self
.
MMOE
(
is_infer
=
True
)
models/multitask/share-bottom/census_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -43,8 +43,8 @@ class TrainReader(Reader):
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
#label_income = np.array(label_income)
#label_marital = np.array(label_marital)
#
label_income = np.array(label_income)
#
label_marital = np.array(label_marital)
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
...
...
models/multitask/share-bottom/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -46,7 +46,6 @@ class Model(ModelBase):
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'bottom_output'
)
# Build tower layer from bottom layer
output_layers
=
[]
for
index
in
range
(
tower_nums
):
...
...
@@ -60,23 +59,26 @@ class Model(ModelBase):
name
=
'output_layer_'
+
str
(
index
))
output_layers
.
append
(
output_layer
)
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost
=
fluid
.
layers
.
elementwise_add
(
cost_income
,
cost_marital
,
axis
=
1
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
@@ -87,10 +89,8 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC_marital"
]
=
auc_marital
self
.
_metrics
[
"BATCH_AUC_marital"
]
=
batch_auc_2
def
train_net
(
self
):
self
.
model
()
def
infer_net
(
self
):
self
.
model
(
is_infer
=
True
)
models/rank/dcn/criteo_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -21,7 +21,6 @@ try:
except
ImportError
:
import
pickle
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
...
...
@@ -85,6 +84,7 @@ class TrainReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
label_feat_list
=
self
.
_process_line
(
line
)
yield
list
(
zip
(
self
.
label_feat_names
,
label_feat_list
))
...
...
models/rank/dcn/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -142,7 +142,6 @@ class Model(ModelBase):
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
# logloss
logloss
=
fluid
.
layers
.
log_loss
(
self
.
prob
,
self
.
target_input
)
self
.
avg_logloss
=
fluid
.
layers
.
reduce_mean
(
logloss
)
...
...
models/rank/deepfm/criteo_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -67,6 +67,7 @@ class TrainReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
feat_idx
,
feat_value
,
label
=
self
.
_process_line
(
line
)
yield
[(
'feat_idx'
,
feat_idx
),
(
'feat_value'
,
feat_value
),
(
'label'
,
label
)]
...
...
models/rank/deepfm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -33,10 +33,11 @@ class Model(ModelBase):
# ------------------------- network input --------------------------
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
,
self
.
_namespace
)
raw_feat_idx
=
fluid
.
data
(
name
=
'feat_idx'
,
shape
=
[
None
,
num_field
],
dtype
=
'int64'
)
# None * num_field(defalut:39)
raw_feat_idx
=
fluid
.
data
(
name
=
'feat_idx'
,
shape
=
[
None
,
num_field
],
dtype
=
'int64'
)
# None * num_field(defalut:39)
raw_feat_value
=
fluid
.
data
(
name
=
'feat_value'
,
shape
=
[
None
,
num_field
],
dtype
=
'float32'
)
# None * num_field
self
.
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
# None * 1
feat_idx
=
fluid
.
layers
.
reshape
(
raw_feat_idx
,[
-
1
,
1
])
# (None * num_field) * 1
feat_idx
=
fluid
.
layers
.
reshape
(
raw_feat_idx
,
[
-
1
,
1
])
# (None * num_field) * 1
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
num_field
,
1
])
# None * num_field * 1
# ------------------------- set _data_var --------------------------
...
...
@@ -48,7 +49,7 @@ class Model(ModelBase):
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
#------------------------- first order term --------------------------
#
------------------------- first order term --------------------------
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
,
self
.
_namespace
)
first_weights_re
=
fluid
.
embedding
(
...
...
@@ -66,7 +67,7 @@ class Model(ModelBase):
first_weights_re
,
shape
=
[
-
1
,
num_field
,
1
])
# None * num_field * 1
y_first_order
=
fluid
.
layers
.
reduce_sum
((
first_weights
*
feat_value
),
1
)
#------------------------- second order term --------------------------
#
------------------------- second order term --------------------------
feat_embeddings_re
=
fluid
.
embedding
(
input
=
feat_idx
,
...
...
@@ -100,8 +101,7 @@ class Model(ModelBase):
summed_features_emb_square
-
squared_sum_features_emb
,
1
,
keep_dim
=
True
)
# None * 1
#------------------------- DNN --------------------------
# ------------------------- DNN --------------------------
layer_sizes
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
,
self
.
_namespace
)
...
...
@@ -129,21 +129,21 @@ class Model(ModelBase):
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)))
#------------------------- DeepFM --------------------------
#
------------------------- DeepFM --------------------------
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
def
train_net
(
self
):
self
.
deepfm_net
()
#------------------------- Cost(logloss) --------------------------
#
------------------------- Cost(logloss) --------------------------
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
self
.
label
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
#------------------------- Metric(Auc) --------------------------
#
------------------------- Metric(Auc) --------------------------
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
...
...
models/rank/din/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -47,9 +47,6 @@ class TrainReader(Reader):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
32
,
"train.reader"
)
self
.
group_size
=
self
.
batch_size
*
20
def
_process_line
(
self
,
line
):
line
=
line
.
strip
().
split
(
';'
)
hist
=
line
[
0
].
split
()
...
...
@@ -58,13 +55,13 @@ class TrainReader(Reader):
cate
=
[
int
(
i
)
for
i
in
cate
]
return
[
hist
,
cate
,
[
int
(
line
[
2
])],
[
int
(
line
[
3
])],
[
float
(
line
[
4
])]]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
#feat_idx, feat_value, label = self._process_line(line)
#
feat_idx, feat_value, label = self._process_line(line)
yield
self
.
_process_line
(
line
)
return
data_iter
...
...
@@ -131,5 +128,3 @@ class TrainReader(Reader):
data_set
=
self
.
base_read
(
files
)
random
.
shuffle
(
data_set
)
return
self
.
batch_reader
(
data_set
,
self
.
batch_size
,
self
.
batch_size
*
20
)
\ No newline at end of file
models/rank/wide_deep/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -27,8 +27,12 @@ class Model(ModelBase):
def
wide_part
(
self
,
data
):
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
])),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
])),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
act
=
None
,
name
=
'wide'
)
return
out
...
...
@@ -36,7 +40,10 @@ class Model(ModelBase):
def
fc
(
self
,
data
,
hidden_units
,
active
,
tag
):
output
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
hidden_units
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]))),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]))),
act
=
active
,
name
=
tag
)
...
...
@@ -65,13 +72,15 @@ class Model(ModelBase):
wide_model
=
fluid
.
layers
.
fc
(
input
=
wide_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_wide'
)
deep_model
=
fluid
.
layers
.
fc
(
input
=
deep_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
...
...
models/rank/wide_deep/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -30,7 +30,7 @@ class TrainReader(Reader):
line
=
line
.
strip
().
split
(
','
)
features
=
list
(
map
(
float
,
line
))
wide_feat
=
features
[
0
:
8
]
deep_feat
=
features
[
8
:
58
+
8
]
deep_feat
=
features
[
8
:
58
+
8
]
label
=
features
[
-
1
]
return
wide_feat
,
deep_feat
,
[
label
]
...
...
@@ -38,6 +38,7 @@ class TrainReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
wide_feat
,
deep_deat
,
label
=
self
.
_process_line
(
line
)
yield
[(
'wide_input'
,
wide_feat
),
(
'deep_input'
,
deep_deat
),
(
'label'
,
label
)]
...
...
models/rank/xdeepfm/criteo_reader.py
浏览文件 @
7a3ec4e6
models/rank/xdeepfm/model.py
浏览文件 @
7a3ec4e6
models/recall/gnn/evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -122,8 +122,9 @@ class EvaluateReader(Reader):
else
:
# Due to fixed batch_size, discard the remaining ins
return
#cur_batch = remain_data[i:]
#yield self.make_data(cur_batch, group_remain % batch_size)
# cur_batch = remain_data[i:]
# yield self.make_data(cur_batch, group_remain % batch_size)
return
_reader
def
generate_batch_from_trainfiles
(
self
,
files
):
...
...
@@ -134,4 +135,5 @@ class EvaluateReader(Reader):
def
generate_sample
(
self
,
line
):
def
data_iter
():
yield
[]
return
data_iter
models/recall/gnn/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -29,13 +29,13 @@ class Model(ModelBase):
def
init_config
(
self
):
self
.
_fetch_interval
=
1
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
train_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
,
None
,
self
.
_namespace
)
def
config_read
(
self
,
config_path
=
None
):
if
config_path
is
None
:
raise
ValueError
(
"please set train.model.hyper_parameters.config_path at first"
)
...
...
@@ -48,31 +48,31 @@ class Model(ModelBase):
self
.
items
=
fluid
.
data
(
name
=
"items"
,
shape
=
[
bs
,
-
1
],
dtype
=
"int64"
)
#
[batch_size, uniq_max]
dtype
=
"int64"
)
#
[batch_size, uniq_max]
self
.
seq_index
=
fluid
.
data
(
name
=
"seq_index"
,
shape
=
[
bs
,
-
1
,
2
],
dtype
=
"int32"
)
#
[batch_size, seq_max, 2]
dtype
=
"int32"
)
#
[batch_size, seq_max, 2]
self
.
last_index
=
fluid
.
data
(
name
=
"last_index"
,
shape
=
[
bs
,
2
],
dtype
=
"int32"
)
#
[batch_size, 2]
dtype
=
"int32"
)
#
[batch_size, 2]
self
.
adj_in
=
fluid
.
data
(
name
=
"adj_in"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
self
.
adj_out
=
fluid
.
data
(
name
=
"adj_out"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
self
.
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
bs
,
-
1
,
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, 1]
dtype
=
"float32"
)
#
[batch_size, seq_max, 1]
self
.
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
bs
,
1
],
dtype
=
"int64"
)
#[batch_size, 1]
dtype
=
"int64"
)
# [batch_size, 1]
res
=
[
self
.
items
,
self
.
seq_index
,
self
.
last_index
,
self
.
adj_in
,
self
.
adj_out
,
self
.
mask
,
self
.
label
]
return
res
...
...
@@ -114,7 +114,7 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, uniq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, uniq_max, h]
state_out
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_out"
,
...
...
@@ -124,10 +124,10 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, uniq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_in
)
#[batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
#
[batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_in
)
#
[batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
#
[batch_size, uniq_max, h]
gru_input
=
layers
.
concat
([
state_adj_in
,
state_adj_out
],
axis
=
2
)
...
...
@@ -155,7 +155,7 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, h]
last_fc
=
layers
.
fc
(
input
=
last
,
name
=
"last_fc"
,
...
...
@@ -165,21 +165,21 @@ class Model(ModelBase):
num_flatten_dims
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#
[bathc_size, h]
low
=-
stdv
,
high
=
stdv
)))
#
[bathc_size, h]
seq_fc_t
=
layers
.
transpose
(
seq_fc
,
perm
=
[
1
,
0
,
2
])
#[seq_max, batch_size, h]
seq_fc
,
perm
=
[
1
,
0
,
2
])
#
[seq_max, batch_size, h]
add
=
layers
.
elementwise_add
(
seq_fc_t
,
last_fc
)
#[seq_max, batch_size, h]
seq_fc_t
,
last_fc
)
#
[seq_max, batch_size, h]
b
=
layers
.
create_parameter
(
shape
=
[
hidden_size
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
#[h]
add
=
layers
.
elementwise_add
(
add
,
b
)
#[seq_max, batch_size, h]
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
#
[h]
add
=
layers
.
elementwise_add
(
add
,
b
)
#
[seq_max, batch_size, h]
add_sigmoid
=
layers
.
sigmoid
(
add
)
#[seq_max, batch_size, h]
add_sigmoid
=
layers
.
sigmoid
(
add
)
# [seq_max, batch_size, h]
add_sigmoid
=
layers
.
transpose
(
add_sigmoid
,
perm
=
[
1
,
0
,
2
])
#[batch_size, seq_max, h]
add_sigmoid
,
perm
=
[
1
,
0
,
2
])
#
[batch_size, seq_max, h]
weight
=
layers
.
fc
(
input
=
add_sigmoid
,
...
...
@@ -190,13 +190,13 @@ class Model(ModelBase):
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, seq_max, 1]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, 1]
weight
*=
self
.
mask
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
#
[batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
weight_mask
,
dim
=
1
)
#
[batch_size, h]
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
#
[batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
weight_mask
,
dim
=
1
)
#
[batch_size, h]
final_attention
=
layers
.
concat
(
[
global_attention
,
last
],
axis
=
1
)
#[batch_size, 2*h]
[
global_attention
,
last
],
axis
=
1
)
#
[batch_size, 2*h]
final_attention_fc
=
layers
.
fc
(
input
=
final_attention
,
name
=
"final_attention_fc"
,
...
...
@@ -204,7 +204,7 @@ class Model(ModelBase):
bias_attr
=
False
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, h]
# all_vocab = layers.create_global_var(
# shape=[items_num - 1],
...
...
@@ -221,13 +221,13 @@ class Model(ModelBase):
name
=
"emb"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
size
=
[
items_num
,
hidden_size
])
#[all_vocab, h]
size
=
[
items_num
,
hidden_size
])
#
[all_vocab, h]
logits
=
layers
.
matmul
(
x
=
final_attention_fc
,
y
=
all_emb
,
transpose_y
=
True
)
#[batch_size, all_vocab]
transpose_y
=
True
)
#
[batch_size, all_vocab]
softmax
=
layers
.
softmax_with_cross_entropy
(
logits
=
logits
,
label
=
self
.
label
)
#[batch_size, 1]
logits
=
logits
,
label
=
self
.
label
)
#
[batch_size, 1]
self
.
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
self
.
label
,
k
=
20
)
...
...
models/recall/gnn/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -122,8 +122,9 @@ class TrainReader(Reader):
else
:
# Due to fixed batch_size, discard the remaining ins
return
#cur_batch = remain_data[i:]
#yield self.make_data(cur_batch, group_remain % batch_size)
# cur_batch = remain_data[i:]
# yield self.make_data(cur_batch, group_remain % batch_size)
return
_reader
def
generate_batch_from_trainfiles
(
self
,
files
):
...
...
@@ -134,4 +135,5 @@ class TrainReader(Reader):
def
generate_sample
(
self
,
line
):
def
data_iter
():
yield
[]
return
data_iter
models/recall/gru4rec/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -86,10 +86,8 @@ class Model(ModelBase):
self
.
_metrics
[
"cost"
]
=
avg_cost
self
.
_metrics
[
"acc"
]
=
acc
def
train_net
(
self
):
self
.
all_vocab_network
()
def
infer_net
(
self
):
self
.
all_vocab_network
(
is_infer
=
True
)
models/recall/ssr/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -51,6 +51,7 @@ class GrnnEncoder(object):
bias_attr
=
self
.
param_name
+
".bias"
)
return
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
class
PairwiseHingeLoss
(
object
):
def
__init__
(
self
,
margin
=
0.8
):
self
.
margin
=
margin
...
...
@@ -67,6 +68,7 @@ class PairwiseHingeLoss(object):
loss_part2
)
return
loss_part3
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
...
...
@@ -77,7 +79,6 @@ class Model(ModelBase):
return
correct
def
train
(
self
):
vocab_size
=
envs
.
get_global_env
(
"hyper_parameters.vocab_size"
,
None
,
self
.
_namespace
)
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.emb_dim"
,
None
,
self
.
_namespace
)
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
...
...
@@ -126,11 +127,9 @@ class Model(ModelBase):
self
.
_metrics
[
"correct"
]
=
correct
self
.
_metrics
[
"hinge_loss"
]
=
hinge_loss
def
train_net
(
self
):
self
.
train
()
def
infer
(
self
):
vocab_size
=
envs
.
get_global_env
(
"hyper_parameters.vocab_size"
,
None
,
self
.
_namespace
)
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.emb_dim"
,
None
,
self
.
_namespace
)
...
...
@@ -170,6 +169,5 @@ class Model(ModelBase):
self
.
_infer_results
[
'recall20'
]
=
acc
def
infer_net
(
self
):
self
.
infer
()
models/recall/ssr/ssr_infer_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,12 +20,10 @@ from paddlerec.core.reader import Reader
from
paddlerec.core.utils
import
envs
class
EvaluateReader
(
Reader
):
def
init
(
self
):
self
.
vocab_size
=
envs
.
get_global_env
(
"vocab_size"
,
10
,
"train.model.hyper_parameters"
)
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
...
...
@@ -41,6 +39,6 @@ class EvaluateReader(Reader):
src
=
conv_ids
[:
boundary
]
pos_tgt
=
[
conv_ids
[
boundary
]]
feature_name
=
[
"user"
,
"all_item"
,
"p_item"
]
yield
zip
(
feature_name
,
[
src
]
+
[
np
.
arange
(
self
.
vocab_size
).
astype
(
"int64"
).
tolist
()]
+
[
pos_tgt
])
yield
zip
(
feature_name
,
[
src
]
+
[
np
.
arange
(
self
.
vocab_size
).
astype
(
"int64"
).
tolist
()]
+
[
pos_tgt
])
return
reader
models/recall/ssr/ssr_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,7 +19,6 @@ import random
from
paddlerec.core.reader
import
Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
...
...
@@ -27,7 +26,6 @@ class TrainReader(Reader):
def
sample_neg_from_seq
(
self
,
seq
):
return
seq
[
random
.
randint
(
0
,
len
(
seq
)
-
1
)]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
...
...
models/recall/word2vec/preprocess.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,11 +20,8 @@ import random
import
re
import
six
import
argparse
prog
=
re
.
compile
(
"[^a-z ]"
,
flags
=
0
)
...
...
@@ -78,7 +75,7 @@ def parse_args():
def
text_strip
(
text
):
#English Preprocess Rule
#
English Preprocess Rule
return
prog
.
sub
(
""
,
text
.
lower
())
...
...
@@ -120,7 +117,7 @@ def filter_corpus(args):
word_all_count
=
0
id_counts
=
[]
word_id
=
0
#read dict
#
read dict
with
io
.
open
(
args
.
dict_path
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
for
line
in
f
:
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
...
...
@@ -130,13 +127,13 @@ def filter_corpus(args):
id_counts
.
append
(
count
)
word_all_count
+=
count
#write word2id file
#
write word2id file
print
(
"write word2id file to : "
+
args
.
dict_path
+
"_word_to_id_"
)
with
io
.
open
(
args
.
dict_path
+
"_word_to_id_"
,
'w+'
,
encoding
=
'utf-8'
)
as
fid
:
for
k
,
v
in
word_to_id_
.
items
():
fid
.
write
(
k
+
" "
+
str
(
v
)
+
'
\n
'
)
#filter corpus and convert id
#
filter corpus and convert id
if
not
os
.
path
.
exists
(
args
.
output_corpus_dir
):
os
.
makedirs
(
args
.
output_corpus_dir
)
for
file
in
os
.
listdir
(
args
.
input_corpus_dir
):
...
...
@@ -205,7 +202,7 @@ def build_dict(args):
for
item
in
item_to_remove
:
unk_sum
+=
word_count
[
item
]
del
word_count
[
item
]
#sort by count
#
sort by count
word_count
[
native_to_unicode
(
'<UNK>'
)]
=
unk_sum
word_count
=
sorted
(
word_count
.
items
(),
key
=
lambda
word_count
:
-
word_count
[
1
])
...
...
@@ -233,12 +230,13 @@ def data_split(args):
print
(
"contents: "
,
str
(
len
(
contents
)))
print
(
"lines_per_file: "
,
str
(
lines_per_file
))
for
i
in
range
(
1
,
num
+
1
):
for
i
in
range
(
1
,
num
+
1
):
with
open
(
os
.
path
.
join
(
new_data_dir
,
"part_"
+
str
(
i
)),
'w'
)
as
fout
:
data
=
contents
[(
i
-
1
)
*
lines_per_file
:
min
(
i
*
lines_per_file
,
len
(
contents
))]
data
=
contents
[(
i
-
1
)
*
lines_per_file
:
min
(
i
*
lines_per_file
,
len
(
contents
))]
for
line
in
data
:
fout
.
write
(
line
)
if
__name__
==
"__main__"
:
args
=
parse_args
()
if
args
.
build_dict
:
...
...
models/recall/word2vec/w2v_evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -49,18 +49,15 @@ class EvaluateReader(Reader):
return
True
return
False
def
_to_unicode
(
self
,
s
,
ignore_errors
=
False
):
if
self
.
_is_unicode
(
s
):
return
s
error_mode
=
"ignore"
if
ignore_errors
else
"strict"
return
s
.
decode
(
"utf-8"
,
errors
=
error_mode
)
def
strip_lines
(
self
,
line
,
vocab
):
return
self
.
_replace_oov
(
vocab
,
self
.
native_to_unicode
(
line
))
def
_replace_oov
(
self
,
original_vocab
,
line
):
"""Replace out-of-vocab words with "<UNK>".
This maintains compatibility with published results.
...
...
@@ -78,5 +75,7 @@ class EvaluateReader(Reader):
def
reader
():
features
=
self
.
strip_lines
(
line
.
lower
(),
self
.
word_to_id
)
features
=
features
.
split
()
yield
[(
'analogy_a'
,
[
self
.
word_to_id
[
features
[
0
]]]),
(
'analogy_b'
,
[
self
.
word_to_id
[
features
[
1
]]]),
(
'analogy_c'
,
[
self
.
word_to_id
[
features
[
2
]]]),
(
'analogy_d'
,
[
self
.
word_to_id
[
features
[
3
]]])]
yield
[(
'analogy_a'
,
[
self
.
word_to_id
[
features
[
0
]]]),
(
'analogy_b'
,
[
self
.
word_to_id
[
features
[
1
]]]),
(
'analogy_c'
,
[
self
.
word_to_id
[
features
[
2
]]]),
(
'analogy_d'
,
[
self
.
word_to_id
[
features
[
3
]]])]
return
reader
models/recall/word2vec/w2v_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -87,7 +87,7 @@ class TrainReader(Reader):
output
=
[(
'input_word'
,
[
int
(
target_id
)]),
(
'true_label'
,
[
int
(
context_id
)])]
if
not
self
.
with_shuffle_batch
:
neg_array
=
self
.
cs
.
searchsorted
(
np
.
random
.
sample
(
self
.
neg_num
))
output
+=
[(
'neg_label'
,
[
int
(
str
(
i
))
for
i
in
neg_array
])]
output
+=
[(
'neg_label'
,
[
int
(
str
(
i
))
for
i
in
neg_array
])]
yield
output
return
reader
return
reader
models/treebased/tdm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -229,7 +229,7 @@ class Model(ModelBase):
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
i
)),
)
for
i
in
range
(
self
.
max_layers
)
]
...
...
@@ -268,8 +268,8 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
i
))
name
=
"cls.concat_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
i
))
)
for
i
in
range
(
self
.
max_layers
)
]
...
...
@@ -458,7 +458,7 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
layer_idx
)),
name
=
"trans.layer_fc.bias."
+
str
(
layer_idx
)),
)
return
input_layer_fc_out
...
...
@@ -479,6 +479,6 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
layer_idx
)))
name
=
"cls.concat_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
layer_idx
)))
return
hidden_states_fc
models/treebased/tdm/tdm_evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -28,6 +28,7 @@ class EvaluateReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
...
...
models/treebased/tdm/tdm_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -28,6 +28,7 @@ class TrainReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
...
...
setup.py
浏览文件 @
7a3ec4e6
...
...
@@ -36,7 +36,7 @@ about["__author__"] = "paddle-dev"
about
[
"__author_email__"
]
=
"paddle-dev@baidu.com"
about
[
"__url__"
]
=
"https://github.com/PaddlePaddle/PaddleRec"
readme
=
"
...
"
readme
=
""
def
run_cmd
(
command
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录