提交 6b39bbf3 编写于 作者: Y yaoxuefeng

udpate rank readme

上级 657ed4bc
...@@ -56,7 +56,19 @@ ...@@ -56,7 +56,19 @@
<img align="center" src="../../doc/imgs/din.png"> <img align="center" src="../../doc/imgs/din.png">
<p> <p>
## 使用教程 ## 使用教程(快速开始)
使用样例数据快速开始,参考[训练](###训练) & [预测](###预测)
## 使用教程(复现论文)
### 注意
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参,并使用提供的脚本下载对应数据集以及数据预处理。
| 模型 | batch_size | thread_num | epoch_num |
| :------------------: | :--------------------: | :--------------------: | :--------------------: |
| DNN | 1000 | 10 | 1 |
| DCN | 512 | 20 | 2 |
| DeepFM | 100 | 10 | 30 |
| DIN | 32 | 10 | 100 |
| Wide&Deep | 40 | 1 | 40 |
| xDeepFM | 100 | 1 | 10 |
### 数据处理 ### 数据处理
参考每个模型目录数据下载&预处理脚本 参考每个模型目录数据下载&预处理脚本
...@@ -68,11 +80,19 @@ sh run.sh ...@@ -68,11 +80,19 @@ sh run.sh
### 训练 ### 训练
``` ```
python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例 cd modles/rank/dnn # 进入选定好的排序模型的目录 以DNN为例
python -m paddlerec.run -m paddlerec.models.rank.dnn # 使用内置配置
python -m paddlerec.run -m ./config.yaml # 自定义修改超参后,指定配置文件,使用自定义配置
``` ```
### 预测 ### 预测
``` ```
python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例 # 修改对应模型的config.yaml,mode配置infer_runner
# 示例: mode: runner1 -> mode: infer_runner
# infer_runner中 class配置为 class: single_infer
# 如果训练阶段和预测阶段的模型输入一直phase不需要改动,复用train的即可
# 修改完config.yaml后 执行:
python -m paddlerec.run -m ./config.yaml # 以DNN为例
``` ```
## 效果对比 ## 效果对比
...@@ -87,16 +107,6 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例 ...@@ -87,16 +107,6 @@ python -m paddlerec.run -m paddlerec.models.rank.dnn # 以DNN为例
| Census-income Data | Wide&Deep | 0.76195 | 0.90577 | -- | -- | | Census-income Data | Wide&Deep | 0.76195 | 0.90577 | -- | -- |
| Amazon Product | DIN | 0.47005 | 0.86379 | -- | -- | | Amazon Product | DIN | 0.47005 | 0.86379 | -- | -- |
### 注意
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参。
| 模型 | batch_size | thread_num | epoch_num |
| :------------------: | :--------------------: | :--------------------: | :--------------------: |
| DNN | 1000 | 10 | 1 |
| DCN | 512 | 20 | 2 |
| DeepFM | 100 | 10 | 30 |
| DIN | 32 | 10 | 100 |
| Wide&Deep | 40 | 1 | 40 |
| xDeepFM | 100 | 1 | 10 |
## 分布式 ## 分布式
### 模型训练性能 (样本/s) ### 模型训练性能 (样本/s)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册