Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
67444120
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67444120
编写于
5月 03, 2020
作者:
Y
yaoxuefeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add wide&deep
上级
c8f35128
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
191 addition
and
0 deletion
+191
-0
models/rank/wide_deep/config.yaml
models/rank/wide_deep/config.yaml
+47
-0
models/rank/wide_deep/create_data.sh
models/rank/wide_deep/create_data.sh
+17
-0
models/rank/wide_deep/model.py
models/rank/wide_deep/model.py
+84
-0
models/rank/wide_deep/reader.py
models/rank/wide_deep/reader.py
+43
-0
未找到文件。
models/rank/wide_deep/config.yaml
0 → 100644
浏览文件 @
67444120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
10
workspace
:
"
fleetrec.models.rank.wide_deep"
reader
:
batch_size
:
2
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train_data"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
hidden1_units
:
75
hidden2_units
:
50
hidden3_units
:
25
learning_rate
:
0.0001
reg
:
0.001
act
:
"
relu"
optimizer
:
SGD
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
models/rank/wide_deep/create_data.sh
0 → 100644
浏览文件 @
67444120
mkdir
train_data
mkdir
test_data
mkdir
data
train_path
=
"/home/yaoxuefeng/repos/models/models/PaddleRec/ctr/wide_deep/data/adult.data"
test_path
=
"/home/yaoxuefeng/repos/models/models/PaddleRec/ctr/wide_deep/data/adult.test"
train_data_path
=
"/home/yaoxuefeng/repos/models/models/PaddleRec/ctr/wide_deep/train_data/train_data.csv"
test_data_path
=
"/home/yaoxuefeng/repos/models/models/PaddleRec/ctr/wide_deep/test_data/test_data.csv"
#pip install -r requirements.txt
#wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
#wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test
python data_preparation.py
--train_path
${
train_path
}
\
--test_path
${
test_path
}
\
--train_data_path
${
train_data_path
}
\
--test_data_path
${
test_data_path
}
models/rank/wide_deep/model.py
0 → 100644
浏览文件 @
67444120
import
paddle.fluid
as
fluid
import
math
from
fleetrec.core.utils
import
envs
from
fleetrec.core.model
import
Model
as
ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
wide_part
(
self
,
data
):
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
])),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
act
=
None
,
name
=
'wide'
)
return
out
def
fc
(
self
,
data
,
hidden_units
,
active
,
tag
):
output
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
hidden_units
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]))),
act
=
active
,
name
=
tag
)
return
output
def
deep_part
(
self
,
data
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
l1
=
self
.
fc
(
data
,
hidden1_units
,
'relu'
,
'l1'
)
l2
=
self
.
fc
(
l1
,
hidden2_units
,
'relu'
,
'l2'
)
l3
=
self
.
fc
(
l2
,
hidden3_units
,
'relu'
,
'l3'
)
return
l3
def
train_net
(
self
):
wide_input
=
fluid
.
data
(
name
=
'wide_input'
,
shape
=
[
None
,
8
],
dtype
=
'float32'
)
deep_input
=
fluid
.
data
(
name
=
'deep_input'
,
shape
=
[
None
,
58
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
self
.
_data_var
.
append
(
wide_input
)
self
.
_data_var
.
append
(
deep_input
)
self
.
_data_var
.
append
(
label
)
hidden1_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden1_units"
,
75
,
self
.
_namespace
)
hidden2_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden2_units"
,
50
,
self
.
_namespace
)
hidden3_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden3_units"
,
25
,
self
.
_namespace
)
wide_output
=
self
.
wide_part
(
wide_input
)
deep_output
=
self
.
deep_part
(
deep_input
,
hidden1_units
,
hidden2_units
,
hidden3_units
)
wide_model
=
fluid
.
layers
.
fc
(
input
=
wide_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_wide'
)
deep_model
=
fluid
.
layers
.
fc
(
input
=
deep_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
prediction
=
fluid
.
layers
.
elementwise_add
(
wide_model
,
deep_model
)
pred
=
fluid
.
layers
.
sigmoid
(
fluid
.
layers
.
clip
(
prediction
,
min
=-
15.0
,
max
=
15.0
),
name
=
"prediction"
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
label
,
dtype
=
'int64'
),
total
=
num_seqs
)
auc_var
,
batch_auc
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
label
,
dtype
=
'int64'
))
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
self
.
_metrics
[
"ACC"
]
=
acc
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
_cost
=
avg_cost
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
deepfm_net
()
\ No newline at end of file
models/rank/wide_deep/reader.py
0 → 100644
浏览文件 @
67444120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
fleetrec.core.reader
import
Reader
from
fleetrec.core.utils
import
envs
try
:
import
cPickle
as
pickle
except
ImportError
:
import
pickle
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
def
_process_line
(
self
,
line
):
line
=
line
.
strip
().
split
(
','
)
features
=
list
(
map
(
float
,
line
))
wide_feat
=
features
[
0
:
8
]
deep_feat
=
features
[
8
:
58
+
8
]
label
=
features
[
-
1
]
return
wide_feat
,
deep_feat
,
[
label
]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
wide_feat
,
deep_deat
,
label
=
self
.
_process_line
(
line
)
yield
[(
'wide_input'
,
wide_feat
),
(
'deep_input'
,
deep_deat
),
(
'label'
,
label
)]
return
data_iter
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录