Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
3eba3369
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3eba3369
编写于
4月 16, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix import
上级
fbbc7134
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
142 addition
and
3 deletion
+142
-3
fleetrec/core/engine/local_mpi_engine.py
fleetrec/core/engine/local_mpi_engine.py
+3
-3
fleetrec/core/trainers/ctr_coding_trainer.py
fleetrec/core/trainers/ctr_coding_trainer.py
+139
-0
未找到文件。
fleetrec/core/engine/local_mpi_engine.py
浏览文件 @
3eba3369
...
@@ -34,8 +34,8 @@ class LocalMPIEngine(Engine):
...
@@ -34,8 +34,8 @@ class LocalMPIEngine(Engine):
log_fns
=
[]
log_fns
=
[]
factory
=
"fleetrec.core.factory"
factory
=
"fleetrec.core.factory"
mpi_
cmd
=
"mpirun -npernode 2 -timestamp-output -tag-output"
.
split
(
" "
)
cmd
=
"mpirun -npernode 2 -timestamp-output -tag-output"
.
split
(
" "
)
cmd
=
mpi_cmd
.
extend
([
sys
.
executable
,
"-u"
,
"-m"
,
factory
,
self
.
trainer
])
cmd
.
extend
([
sys
.
executable
,
"-u"
,
"-m"
,
factory
,
self
.
trainer
])
if
logs_dir
is
not
None
:
if
logs_dir
is
not
None
:
os
.
system
(
"mkdir -p {}"
.
format
(
logs_dir
))
os
.
system
(
"mkdir -p {}"
.
format
(
logs_dir
))
...
@@ -49,7 +49,7 @@ class LocalMPIEngine(Engine):
...
@@ -49,7 +49,7 @@ class LocalMPIEngine(Engine):
for
i
in
range
(
len
(
procs
)):
for
i
in
range
(
len
(
procs
)):
if
len
(
log_fns
)
>
0
:
if
len
(
log_fns
)
>
0
:
log_fns
[
i
].
close
()
log_fns
[
i
].
close
()
procs
[
i
].
terminate
()
procs
[
i
].
wait
()
print
(
"all workers and parameter servers already completed"
,
file
=
sys
.
stderr
)
print
(
"all workers and parameter servers already completed"
,
file
=
sys
.
stderr
)
def
run
(
self
):
def
run
(
self
):
...
...
fleetrec/core/trainers/ctr_coding_trainer.py
0 → 100755
浏览文件 @
3eba3369
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
import
json
import
datetime
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.base.role_maker
import
MPISymetricRoleMaker
from
fleetrec.core.utils
import
envs
from
fleetrec.core.trainer
import
Trainer
class
CtrPaddleTrainer
(
Trainer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
Trainer
.
__init__
(
self
,
config
)
self
.
global_config
=
config
self
.
_metrics
=
{}
self
.
processor_register
()
def
processor_register
(
self
):
role
=
MPISymetricRoleMaker
()
fleet
.
init
(
role
)
if
fleet
.
is_server
():
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'server_pass'
,
self
.
server
)
else
:
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
_get_dataset
(
self
):
namespace
=
"train.reader"
inputs
=
self
.
model
.
get_inputs
()
threads
=
envs
.
get_global_env
(
"train.threads"
,
None
)
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
namespace
)
reader_class
=
envs
.
get_global_env
(
"class"
,
None
,
namespace
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'reader_instance.py'
)
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config
)
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
namespace
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_use_var
(
inputs
)
dataset
.
set_pipe_command
(
pipe_cmd
)
dataset
.
set_batch_size
(
batch_size
)
dataset
.
set_thread
(
threads
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
return
dataset
def
instance
(
self
,
context
):
models
=
envs
.
get_global_env
(
"train.model.models"
)
model_class
=
envs
.
lazy_instance
(
models
,
"Model"
)
self
.
model
=
model_class
(
None
)
context
[
'status'
]
=
'init_pass'
def
init
(
self
,
context
):
"""R
"""
self
.
model
.
train_net
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
{
"use_cvm"
:
False
})
optimizer
.
minimize
(
self
.
model
.
get_cost_op
())
if
fleet
.
is_server
():
context
[
'status'
]
=
'server_pass'
else
:
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'train_pass'
def
server
(
self
,
context
):
fleet
.
run_server
()
context
[
'is_exit'
]
=
True
def
train
(
self
,
context
):
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
fleet
.
init_worker
()
dataset
=
self
.
_get_dataset
()
shuf
=
np
.
array
([
fleet
.
worker_index
()])
gs
=
shuf
*
0
fleet
.
_role_maker
.
_node_type_comm
.
Allreduce
(
shuf
,
gs
)
print
(
"trainer id: {}, trainers: {}, gs: {}"
.
format
(
fleet
.
worker_index
(),
fleet
.
worker_num
(),
gs
))
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
context
[
'status'
]
=
'terminal_pass'
fleet
.
stop_worker
()
def
terminal
(
self
,
context
):
print
(
"terminal ended."
)
context
[
'is_exit'
]
=
True
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录