未验证 提交 3a45a161 编写于 作者: 1 123malin 提交者: GitHub

Merge branch 'master' into metrics

# DIEN
## 注意: config.yaml中指定了训练阶段的dataset名称为sample_1,预测阶段的dataset名称为infer_sample。同时在reader.py 和 infer_reader.py中,通个这两个dataset的名字读取的dataset的相关配置,如果修改了config.yaml中的dataset名字,需要在对应的reader.py 或者 infer_reader.py中同步修改下。
...@@ -19,14 +19,14 @@ workspace: "paddlerec.models.rank.dien" ...@@ -19,14 +19,14 @@ workspace: "paddlerec.models.rank.dien"
dataset: dataset:
- name: sample_1 - name: sample_1
type: DataLoader type: DataLoader
batch_size: 5 batch_size: 32
data_path: "{workspace}/data/train_data" data_path: "{workspace}/data/train_data"
data_converter: "{workspace}/reader.py" data_converter: "{workspace}/reader.py"
- name: infer_sample - name: infer_sample
type: DataLoader type: DataLoader
batch_size: 5 batch_size: 32
data_path: "{workspace}/data/train_data" data_path: "{workspace}/data/train_data"
data_converter: "{workspace}/reader.py" data_converter: "{workspace}/infer_reader.py"
hyper_parameters: hyper_parameters:
optimizer: optimizer:
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import random
try:
import cPickle as pickle
except ImportError:
import pickle
import numpy as np
from paddlerec.core.reader import ReaderBase
from paddlerec.core.utils import envs
class Reader(ReaderBase):
def init(self):
self.train_data_path = envs.get_global_env(
"dataset.infer_sample.data_path", None)
self.res = []
self.max_len = 0
self.neg_candidate_item = []
self.neg_candidate_cat = []
self.max_neg_item = 10000
self.max_neg_cat = 1000
data_file_list = os.listdir(self.train_data_path)
for i in range(0, len(data_file_list)):
train_data_file = os.path.join(self.train_data_path,
data_file_list[i])
with open(train_data_file, "r") as fin:
for line in fin:
line = line.strip().split(';')
hist = line[0].split()
self.max_len = max(self.max_len, len(hist))
fo = open("tmp.txt", "w")
fo.write(str(self.max_len))
fo.close()
self.batch_size = envs.get_global_env(
"dataset.infer_sample.batch_size", 32, None)
self.group_size = self.batch_size * 20
def _process_line(self, line):
line = line.strip().split(';')
hist = line[0].split()
hist = [int(i) for i in hist]
cate = line[1].split()
cate = [int(i) for i in cate]
return [hist, cate, [int(line[2])], [int(line[3])], [float(line[4])]]
def generate_sample(self, line):
"""
Read the data line by line and process it as a dictionary
"""
def data_iter():
# feat_idx, feat_value, label = self._process_line(line)
yield self._process_line(line)
return data_iter
def pad_batch_data(self, input, max_len):
res = np.array([x + [0] * (max_len - len(x)) for x in input])
res = res.astype("int64").reshape([-1, max_len])
return res
def make_data(self, b):
max_len = max(len(x[0]) for x in b)
# item = self.pad_batch_data([x[0] for x in b], max_len)
# cat = self.pad_batch_data([x[1] for x in b], max_len)
item = [x[0] for x in b]
cat = [x[1] for x in b]
neg_item = [None] * len(item)
neg_cat = [None] * len(cat)
for i in range(len(b)):
neg_item[i] = []
neg_cat[i] = []
if len(self.neg_candidate_item) < self.max_neg_item:
self.neg_candidate_item.extend(b[i][0])
if len(self.neg_candidate_item) > self.max_neg_item:
self.neg_candidate_item = self.neg_candidate_item[
0:self.max_neg_item]
else:
len_seq = len(b[i][0])
start_idx = random.randint(0, self.max_neg_item - len_seq - 1)
self.neg_candidate_item[start_idx:start_idx + len_seq + 1] = b[
i][0]
if len(self.neg_candidate_cat) < self.max_neg_cat:
self.neg_candidate_cat.extend(b[i][1])
if len(self.neg_candidate_cat) > self.max_neg_cat:
self.neg_candidate_cat = self.neg_candidate_cat[
0:self.max_neg_cat]
else:
len_seq = len(b[i][1])
start_idx = random.randint(0, self.max_neg_cat - len_seq - 1)
self.neg_candidate_item[start_idx:start_idx + len_seq + 1] = b[
i][1]
for _ in range(len(b[i][0])):
neg_item[i].append(self.neg_candidate_item[random.randint(
0, len(self.neg_candidate_item) - 1)])
for _ in range(len(b[i][1])):
neg_cat[i].append(self.neg_candidate_cat[random.randint(
0, len(self.neg_candidate_cat) - 1)])
len_array = [len(x[0]) for x in b]
mask = np.array(
[[0] * x + [-1e9] * (max_len - x) for x in len_array]).reshape(
[-1, max_len, 1])
target_item_seq = np.array(
[[x[2]] * max_len for x in b]).astype("int64").reshape(
[-1, max_len])
target_cat_seq = np.array(
[[x[3]] * max_len for x in b]).astype("int64").reshape(
[-1, max_len])
res = []
for i in range(len(b)):
res.append([
item[i], cat[i], b[i][2], b[i][3], b[i][4], mask[i],
target_item_seq[i], target_cat_seq[i], neg_item[i], neg_cat[i]
])
return res
def batch_reader(self, reader, batch_size, group_size):
def batch_reader():
bg = []
for line in reader:
bg.append(line)
if len(bg) == group_size:
sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
bg = []
for i in range(0, group_size, batch_size):
b = sortb[i:i + batch_size]
yield self.make_data(b)
len_bg = len(bg)
if len_bg != 0:
sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
bg = []
remain = len_bg % batch_size
for i in range(0, len_bg - remain, batch_size):
b = sortb[i:i + batch_size]
yield self.make_data(b)
return batch_reader
def base_read(self, file_dir):
res = []
for train_file in file_dir:
with open(train_file, "r") as fin:
for line in fin:
line = line.strip().split(';')
hist = line[0].split()
cate = line[1].split()
res.append([hist, cate, line[2], line[3], float(line[4])])
return res
def generate_batch_from_trainfiles(self, files):
data_set = self.base_read(files)
random.shuffle(data_set)
return self.batch_reader(data_set, self.batch_size,
self.batch_size * 20)
...@@ -51,7 +51,7 @@ class Reader(ReaderBase): ...@@ -51,7 +51,7 @@ class Reader(ReaderBase):
fo.write(str(self.max_len)) fo.write(str(self.max_len))
fo.close() fo.close()
self.batch_size = envs.get_global_env("dataset.sample_1.batch_size", self.batch_size = envs.get_global_env("dataset.sample_1.batch_size",
32, "train.reader") 32, None)
self.group_size = self.batch_size * 20 self.group_size = self.batch_size * 20
def _process_line(self, line): def _process_line(self, line):
......
# DIN
## 注意: config.yaml中指定了训练阶段的dataset名称为sample_1,预测阶段的dataset名称为infer_sample。同时在reader.py 和 infer_reader.py中,通个这两个dataset的名字读取的dataset的相关配置,如果修改了config.yaml中的dataset名字,需要在对应的reader.py 或者 infer_reader.py中同步修改下。
...@@ -26,7 +26,7 @@ dataset: ...@@ -26,7 +26,7 @@ dataset:
type: DataLoader type: DataLoader
batch_size: 5 batch_size: 5
data_path: "{workspace}/data/train_data" data_path: "{workspace}/data/train_data"
data_converter: "{workspace}/reader.py" data_converter: "{workspace}/infer_reader.py"
hyper_parameters: hyper_parameters:
optimizer: optimizer:
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import random
try:
import cPickle as pickle
except ImportError:
import pickle
import numpy as np
from paddlerec.core.reader import ReaderBase
from paddlerec.core.utils import envs
class Reader(ReaderBase):
def init(self):
self.train_data_path = envs.get_global_env(
"dataset.infer_sample.data_path", None)
self.res = []
self.max_len = 0
data_file_list = os.listdir(self.train_data_path)
for i in range(0, len(data_file_list)):
train_data_file = os.path.join(self.train_data_path,
data_file_list[i])
with open(train_data_file, "r") as fin:
for line in fin:
line = line.strip().split(';')
hist = line[0].split()
self.max_len = max(self.max_len, len(hist))
fo = open("tmp.txt", "w")
fo.write(str(self.max_len))
fo.close()
self.batch_size = envs.get_global_env(
"dataset.infer_sample.batch_size", 32, None)
self.group_size = self.batch_size * 20
def _process_line(self, line):
line = line.strip().split(';')
hist = line[0].split()
hist = [int(i) for i in hist]
cate = line[1].split()
cate = [int(i) for i in cate]
return [hist, cate, [int(line[2])], [int(line[3])], [float(line[4])]]
def generate_sample(self, line):
"""
Read the data line by line and process it as a dictionary
"""
def data_iter():
# feat_idx, feat_value, label = self._process_line(line)
yield self._process_line(line)
return data_iter
def pad_batch_data(self, input, max_len):
res = np.array([x + [0] * (max_len - len(x)) for x in input])
res = res.astype("int64").reshape([-1, max_len])
return res
def make_data(self, b):
max_len = max(len(x[0]) for x in b)
item = self.pad_batch_data([x[0] for x in b], max_len)
cat = self.pad_batch_data([x[1] for x in b], max_len)
len_array = [len(x[0]) for x in b]
mask = np.array(
[[0] * x + [-1e9] * (max_len - x) for x in len_array]).reshape(
[-1, max_len, 1])
target_item_seq = np.array(
[[x[2]] * max_len for x in b]).astype("int64").reshape(
[-1, max_len])
target_cat_seq = np.array(
[[x[3]] * max_len for x in b]).astype("int64").reshape(
[-1, max_len])
res = []
for i in range(len(b)):
res.append([
item[i], cat[i], b[i][2], b[i][3], b[i][4], mask[i],
target_item_seq[i], target_cat_seq[i]
])
return res
def batch_reader(self, reader, batch_size, group_size):
def batch_reader():
bg = []
for line in reader:
bg.append(line)
if len(bg) == group_size:
sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
bg = []
for i in range(0, group_size, batch_size):
b = sortb[i:i + batch_size]
yield self.make_data(b)
len_bg = len(bg)
if len_bg != 0:
sortb = sorted(bg, key=lambda x: len(x[0]), reverse=False)
bg = []
remain = len_bg % batch_size
for i in range(0, len_bg - remain, batch_size):
b = sortb[i:i + batch_size]
yield self.make_data(b)
return batch_reader
def base_read(self, file_dir):
res = []
for train_file in file_dir:
with open(train_file, "r") as fin:
for line in fin:
line = line.strip().split(';')
hist = line[0].split()
cate = line[1].split()
res.append([hist, cate, line[2], line[3], float(line[4])])
return res
def generate_batch_from_trainfiles(self, files):
data_set = self.base_read(files)
random.shuffle(data_set)
return self.batch_reader(data_set, self.batch_size,
self.batch_size * 20)
...@@ -47,7 +47,7 @@ class Reader(ReaderBase): ...@@ -47,7 +47,7 @@ class Reader(ReaderBase):
fo.write(str(self.max_len)) fo.write(str(self.max_len))
fo.close() fo.close()
self.batch_size = envs.get_global_env("dataset.sample_1.batch_size", self.batch_size = envs.get_global_env("dataset.sample_1.batch_size",
32, "train.reader") 32, None)
self.group_size = self.batch_size * 20 self.group_size = self.batch_size * 20
def _process_line(self, line): def _process_line(self, line):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册