提交 2cba27a6 编写于 作者: T tangwei

fix import

上级 2e91f58f
...@@ -28,10 +28,7 @@ class TrainerFactory(object): ...@@ -28,10 +28,7 @@ class TrainerFactory(object):
def _build_trainer(yaml_path): def _build_trainer(yaml_path):
print(envs.pretty_print_envs(envs.get_global_envs())) print(envs.pretty_print_envs(envs.get_global_envs()))
train_mode = envs.get_global_env("train.trainer") train_mode = envs.get_training_mode()
if train_mode is None:
train_mode = envs.get_runtime_envion("train.trainer")
if train_mode == "SingleTraining": if train_mode == "SingleTraining":
from fleetrec.core.trainers.single_trainer import SingleTrainer from fleetrec.core.trainers.single_trainer import SingleTrainer
......
...@@ -12,10 +12,6 @@ ...@@ -12,10 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os import os
import sys
import time
import json
import datetime
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
......
...@@ -29,6 +29,14 @@ def get_runtime_envion(key): ...@@ -29,6 +29,14 @@ def get_runtime_envion(key):
return os.getenv(key, None) return os.getenv(key, None)
def get_training_mode():
train_mode = get_global_env("train.trainer")
if train_mode is None:
train_mode = get_runtime_envion("train.trainer")
return train_mode
def set_global_envs(envs): def set_global_envs(envs):
assert isinstance(envs, dict) assert isinstance(envs, dict)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
examples for user
"""
\ No newline at end of file
trainer: "MPIClusterTraining"
pserver_num: 2
trainer_num: 2
start_port: 36001
log_dirname: "logs"
strategy:
mode: "async"
...@@ -27,7 +27,7 @@ train: ...@@ -27,7 +27,7 @@ train:
hyper_parameters: hyper_parameters:
sparse_inputs_slots: 27 sparse_inputs_slots: 27
sparse_feature_number: 1000001 sparse_feature_number: 1000001
sparse_feature_dim: 8 sparse_feature_dim: 9
dense_input_dim: 13 dense_input_dim: 13
fc_sizes: [512, 256, 128, 32] fc_sizes: [512, 256, 128, 32]
learning_rate: 0.001 learning_rate: 0.001
......
...@@ -60,13 +60,18 @@ class Model(ModelBase): ...@@ -60,13 +60,18 @@ class Model(ModelBase):
self._data_var.append(self.label_input) self._data_var.append(self.label_input)
def net(self): def net(self):
def embedding_layer(input): train_mode = envs.get_training_mode()
sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self.namespace)
sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self.namespace) is_distributed = True if train_mode == "CtrTraining" else False
sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self.namespace)
sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self.namespace)
sparse_feature_dim = 9 if train_mode == "CtrTraining" else sparse_feature_dim
def embedding_layer(input):
emb = fluid.layers.embedding( emb = fluid.layers.embedding(
input=input, input=input,
is_sparse=True, is_sparse=True,
is_distributed=is_distributed,
size=[sparse_feature_number, sparse_feature_dim], size=[sparse_feature_number, sparse_feature_dim],
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name="SparseFeatFactors", name="SparseFeatFactors",
......
...@@ -103,6 +103,15 @@ if __name__ == "__main__": ...@@ -103,6 +103,15 @@ if __name__ == "__main__":
local_mpi_engine(cluster_envs, args.model) local_mpi_engine(cluster_envs, args.model)
elif args.engine.upper() == "CLUSTER": elif args.engine.upper() == "CLUSTER":
print("launch ClusterTraining with cluster to run model: {}".format(args.model)) print("launch ClusterTraining with cluster to run model: {}".format(args.model))
if version.is_transpiler():
print("use ClusterTraining to run model: {}".format(args.model))
cluster_envs = {"train.trainer": "ClusterTraining"}
envs.set_runtime_envions(cluster_envs)
else:
cluster_envs = {"train.trainer": "CtrTraining"}
envs.set_runtime_envions(cluster_envs)
run(args.model) run(args.model)
elif args.engine.upper() == "USER_DEFINE": elif args.engine.upper() == "USER_DEFINE":
engine_file = args.engine_extras engine_file = args.engine_extras
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册