Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
1e953617
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e953617
编写于
3月 31, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ctr-dnn example
上级
910d0cd1
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
301 addition
and
94 deletion
+301
-94
examples/ctr-dnn_train.yaml
examples/ctr-dnn_train.yaml
+65
-0
models/ctr_dnn/hyper_parameters.yaml
models/ctr_dnn/hyper_parameters.yaml
+33
-8
models/ctr_dnn/model.py
models/ctr_dnn/model.py
+14
-2
trainer/cluster_train_local.py
trainer/cluster_train_local.py
+0
-0
trainer/cluster_train_offline.py
trainer/cluster_train_offline.py
+0
-0
trainer/cluster_training_local.py
trainer/cluster_training_local.py
+0
-77
trainer/single_train.py
trainer/single_train.py
+168
-0
trainer/trainer.py
trainer/trainer.py
+17
-3
utils/envs.py
utils/envs.py
+4
-4
未找到文件。
examples/ctr-dnn_train.yaml
0 → 100644
浏览文件 @
1e953617
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
batch_size
:
32
threads
:
12
epochs
:
10
trainer
:
"
SingleTraining"
reader
:
mode
:
"
dataset"
pipe_command
:
"
python
reader.py
dataset"
train_data_path
:
"
raw_data"
model
:
models
:
"
eleps.models.ctr_dnn.model.py"
hyper_parameters
:
sparse_inputs_slots
:
27,
sparse_feature_number
:
1000001,
sparse_feature_dim
:
8,
dense_input_dim
:
13,
fc_sizes
:
[
1024
,
512
,
32
]
,
learning_rate
:
0.001
save
:
increment
:
dirname
:
"
models_for_increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
models_for_inference"
epoch_interval
:
4
feed_varnames
:
[
"
C1"
,
"
C2"
,
"
C3"
]
fetch_varnames
:
"
predict"
save_last
:
True
evaluate
:
batch_size
:
32
train_thread_num
:
12
reader
:
"
reader.py"
models/ctr_dnn/hyper_parameters.yaml
浏览文件 @
1e953617
{
"
sparse_inputs_slots"
:
27
,
"
sparse_feature_number"
:
1000001
,
"
sparse_feature_dim"
:
8
,
"
dense_input_dim"
:
13
,
"
fc_sizes"
:
[
400
,
400
,
40
],
"
learning_rate"
:
0.001
}
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
sparse_inputs_slots
:
27,
sparse_feature_number
:
1000001,
sparse_feature_dim
:
8,
dense_input_dim
:
13,
fc_sizes
:
[
400
,
400
,
40
]
,
learning_rate
:
0.001
models/ctr_dnn/model.py
浏览文件 @
1e953617
...
...
@@ -57,6 +57,12 @@ class Train(object):
self
.
dense_input
,
self
.
dense_input_varname
=
dense_input
()
self
.
label_input
,
self
.
label_input_varname
=
label_input
()
def
input_vars
(
self
):
return
self
.
sparse_inputs
+
[
self
.
dense_input
]
+
[
self
.
label_input
]
def
input_varnames
(
self
):
return
[
input
.
name
for
input
in
self
.
input_vars
()]
def
net
(
self
):
def
embedding_layer
(
input
):
sparse_feature_number
=
envs
.
get_global_env
(
"sparse_feature_number"
)
...
...
@@ -101,22 +107,28 @@ class Train(object):
self
.
predict
=
predict
def
loss
(
self
,
predict
):
def
avg_
loss
(
self
,
predict
):
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
loss
=
avg_cost
return
avg_cost
def
metric
(
self
):
def
metric
s
(
self
):
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
self
.
metrics
=
(
auc
,
batch_auc
)
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"learning_rate"
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
optimize
(
self
):
optimizer
=
self
.
optimizer
()
optimizer
.
minimize
(
self
.
loss
)
class
Evaluate
(
object
):
def
input
(
self
):
...
...
trainer/cluster_train_local.py
0 → 100644
浏览文件 @
1e953617
trainer/cluster_train
ing
_offline.py
→
trainer/cluster_train_offline.py
浏览文件 @
1e953617
文件已移动
trainer/cluster_training_local.py
已删除
100644 → 0
浏览文件 @
910d0cd1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
time
import
numpy
as
np
import
logging
import
paddle.fluid
as
fluid
from
network
import
CTR
from
argument
import
params_args
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
get_dataset
(
inputs
,
params
):
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_use_var
(
inputs
)
dataset
.
set_pipe_command
(
"python dataset_generator.py"
)
dataset
.
set_batch_size
(
params
.
batch_size
)
dataset
.
set_thread
(
int
(
params
.
cpu_num
))
file_list
=
[
str
(
params
.
train_files_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
params
.
train_files_path
)
]
dataset
.
set_filelist
(
file_list
)
logger
.
info
(
"file list: {}"
.
format
(
file_list
))
return
dataset
def
train
(
params
):
ctr_model
=
CTR
()
inputs
=
ctr_model
.
input_data
(
params
)
avg_cost
,
auc_var
,
batch_auc_var
=
ctr_model
.
net
(
inputs
,
params
)
optimizer
=
fluid
.
optimizer
.
Adam
(
params
.
learning_rate
)
optimizer
.
minimize
(
avg_cost
)
fluid
.
default_main_program
()
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
dataset
=
get_dataset
(
inputs
,
params
)
logger
.
info
(
"Training Begin"
)
for
epoch
in
range
(
params
.
epochs
):
start_time
=
time
.
time
()
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
[
auc_var
],
fetch_info
=
[
"Epoch {} auc "
.
format
(
epoch
)],
print_period
=
100
,
debug
=
False
)
end_time
=
time
.
time
()
logger
.
info
(
"epoch %d finished, use time=%d
\n
"
%
((
epoch
),
end_time
-
start_time
))
if
params
.
test
:
model_path
=
(
str
(
params
.
model_path
)
+
"/"
+
"epoch_"
+
str
(
epoch
))
fluid
.
io
.
save_persistables
(
executor
=
exe
,
dirname
=
model_path
)
logger
.
info
(
"Train Success!"
)
if
__name__
==
"__main__"
:
params
=
params_args
()
train
(
params
)
\ No newline at end of file
trainer/single_train.py
0 → 100644
浏览文件 @
1e953617
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
os
import
time
import
numpy
as
np
import
logging
import
paddle.fluid
as
fluid
from
.trainer
import
Trainer
from
..utils
import
envs
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
return
epoch_id
%
epoch_interval
==
0
class
SingleTrainer
(
Trainer
):
def
__init__
(
self
,
config
=
None
,
yaml_file
=
None
):
Trainer
.
__init__
(
self
,
config
,
yaml_file
)
self
.
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
train
)
self
.
regist_context_processor
(
'infer_pass'
,
self
.
infer
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
model_package
=
__import__
(
envs
.
get_global_env
(
"train.model.models"
))
train_model
=
getattr
(
model_package
,
'Train'
)
self
.
model
=
train_model
()
context
[
'status'
]
=
'init_pass'
def
init
(
self
,
context
):
self
.
model
.
input
()
self
.
model
.
net
()
self
.
model
.
loss
()
self
.
metrics
=
self
.
model
.
metrics
()
self
.
model
.
optimize
()
# run startup program at once
self
.
exe
.
run
(
fluid
.
default_startup_program
())
context
[
'status'
]
=
'train_pass'
def
train
(
self
,
context
):
print
(
"Need to be implement"
)
context
[
'is_exit'
]
=
True
def
infer
(
self
,
context
):
print
(
"Need to be implement"
)
context
[
'is_exit'
]
=
True
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
class
SingleTrainerWithDataloader
(
SingleTrainer
):
pass
class
SingleTrainerWithDataset
(
SingleTrainer
):
def
_get_dataset
(
self
,
inputs
,
threads
,
batch_size
,
pipe_command
,
train_files_path
):
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_use_var
(
inputs
)
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_batch_size
(
batch_size
)
dataset
.
set_thread
(
threads
)
file_list
=
[
os
.
path
.
join
(
train_files_path
,
x
)
for
x
in
os
.
listdir
(
train_files_path
)
]
dataset
.
set_filelist
(
file_list
)
return
dataset
def
save
(
self
,
epoch_id
):
def
save_inference_model
():
is_save_inference
=
envs
.
get_global_env
(
"save.inference"
,
False
)
if
not
is_save_inference
:
return
save_interval
=
envs
.
get_global_env
(
"save.inference.epoch_interval"
,
1
)
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
"save.inference.feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
"save.inference.fetch_varnames"
,
None
)
fetch_vars
=
[
fluid
.
global_scope
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
"save.inference.dirname"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
exe
)
def
save_persistables
():
is_save_increment
=
envs
.
get_global_env
(
"save.increment"
,
False
)
if
not
is_save_increment
:
return
save_interval
=
envs
.
get_global_env
(
"save.increment.epoch_interval"
,
1
)
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
"save.inference.dirname"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
fluid
.
io
.
save_persistables
(
self
.
exe
,
dirname
)
is_save
=
envs
.
get_global_env
(
"save"
,
False
)
if
not
is_save
:
return
save_persistables
()
save_inference_model
()
def
train
(
self
,
context
):
inputs
=
self
.
model
.
input_vars
()
threads
=
envs
.
get_global_env
(
"threads"
)
batch_size
=
envs
.
get_global_env
(
"batch_size"
)
pipe_command
=
envs
.
get_global_env
(
"pipe_command"
)
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
)
dataset
=
self
.
_get_dataset
(
inputs
,
threads
,
batch_size
,
pipe_command
,
train_data_path
)
epochs
=
envs
.
get_global_env
(
"epochs"
)
for
i
in
range
(
epochs
):
self
.
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
[
self
.
metrics
],
fetch_info
=
[
"epoch {} auc "
.
format
(
i
)],
print_period
=
100
)
context
[
'status'
]
=
'infer_pass'
def
infer
(
self
,
context
):
context
[
'status'
]
=
'terminal_pass'
trainer/trainer.py
浏览文件 @
1e953617
...
...
@@ -14,6 +14,9 @@
import
abc
import
time
import
yaml
from
..
utils
import
envs
class
Trainer
(
object
):
...
...
@@ -21,9 +24,20 @@ class Trainer(object):
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
config
):
"""R
"""
def
__init__
(
self
,
config
=
None
,
yaml_file
=
None
):
if
not
config
and
not
yaml_file
:
raise
ValueError
(
"config and yaml file have at least one not empty"
)
if
config
and
yaml_file
:
print
(
"config and yaml file are all assigned, will use yaml file: {}"
.
format
(
yaml_file
))
if
yaml_file
:
with
open
(
yaml_file
,
"r"
)
as
rb
:
config
=
yaml
.
load
(
rb
.
read
())
envs
.
set_global_envs
(
config
)
self
.
_status_processor
=
{}
self
.
_context
=
{
'status'
:
'uninit'
,
'is_exit'
:
False
}
...
...
utils/envs.py
浏览文件 @
1e953617
...
...
@@ -24,17 +24,17 @@ def decode_value(v):
return
v
def
set_global_envs
(
yaml
,
envs
):
def
set_global_envs
(
yaml
):
for
k
,
v
in
yaml
.
items
():
envs
[
k
]
=
encode_value
(
v
)
os
.
environ
[
k
]
=
encode_value
(
v
)
def
get_global_env
(
env_name
):
def
get_global_env
(
env_name
,
default_value
=
None
):
"""
get os environment value
"""
if
env_name
not
in
os
.
environ
:
r
aise
ValueError
(
"can not find config of {}"
.
format
(
env_name
))
r
eturn
default_value
v
=
os
.
environ
[
env_name
]
return
decode_value
(
v
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录