提交 1125b796 编写于 作者: X xujiaqi01

Merge branch 'develop' into 'develop'

merge

See merge request !19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
train:
trainer:
# for cluster training
strategy: "async"
epochs: 10
workspace: "fleetrec.models.rank.tagspace"
reader:
batch_size: 5
class: "{workspace}/reader.py"
train_data_path: "{workspace}/train_data"
model:
models: "{workspace}/model.py"
hyper_parameters:
vocab_text_size: 11447
vocab_tag_size: 4
emb_dim: 10
hid_dim: 1000
win_size: 5
margin: 0.1
neg_size: 3
num_devices: 1
save:
increment:
dirname: "increment"
epoch_interval: 1
save_last: True
inference:
dirname: "inference"
epoch_interval: 100
save_last: True
import paddle.fluid as fluid
import math
from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase
import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
self.cost = None
self.metrics = {}
self.vocab_text_size = 11447#envs.get_global_env("vocab_text_size", None, self._namespace)
self.vocab_tag_size = 4#envs.get_global_env("vocab_tag_size", None, self._namespace)
self.emb_dim = 10#envs.get_global_env("emb_dim", None, self._namespace)
self.hid_dim = 1000#envs.get_global_env("hid_dim", None, self._namespace)
self.win_size = 5#envs.get_global_env("win_size", None, self._namespace)
self.margin = 0.1#envs.get_global_env("margin", None, self._namespace)
self.neg_size = 3#envs.get_global_env("neg_size", None, self._namespace)
print self.emb_dim
def train_net(self):
""" network definition """
text = fluid.data(name="text", shape=[None, 1], lod_level=1, dtype='int64')
pos_tag = fluid.data(
name="pos_tag", shape=[None, 1], lod_level=1, dtype='int64')
neg_tag = fluid.data(
name="neg_tag", shape=[None, 1], lod_level=1, dtype='int64')
self._data_var = [text, pos_tag, neg_tag]
text_emb = fluid.embedding(
input=text, size=[self.vocab_text_size, self.emb_dim], param_attr="text_emb")
text_emb = fluid.layers.squeeze(input=text_emb, axes=[1])
pos_tag_emb = fluid.embedding(
input=pos_tag, size=[self.vocab_tag_size, self.emb_dim], param_attr="tag_emb")
pos_tag_emb = fluid.layers.squeeze(input=pos_tag_emb, axes=[1])
neg_tag_emb = fluid.embedding(
input=neg_tag, size=[self.vocab_tag_size, self.emb_dim], param_attr="tag_emb")
neg_tag_emb = fluid.layers.squeeze(input=neg_tag_emb, axes=[1])
conv_1d = fluid.nets.sequence_conv_pool(
input=text_emb,
num_filters=self.hid_dim,
filter_size=self.win_size,
act="tanh",
pool_type="max",
param_attr="cnn")
text_hid = fluid.layers.fc(input=conv_1d,
size=self.emb_dim,
param_attr="text_hid")
cos_pos = nn.cos_sim(pos_tag_emb, text_hid)
mul_text_hid = fluid.layers.sequence_expand_as(x=text_hid, y=neg_tag_emb)
mul_cos_neg = nn.cos_sim(neg_tag_emb, mul_text_hid)
cos_neg_all = fluid.layers.sequence_reshape(
input=mul_cos_neg, new_dim=self.neg_size)
#choose max negtive cosine
cos_neg = nn.reduce_max(cos_neg_all, dim=1, keep_dim=True)
#calculate hinge loss
loss_part1 = nn.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=cos_pos, shape=[-1, 1], value=self.margin, dtype='float32'),
cos_pos)
loss_part2 = nn.elementwise_add(loss_part1, cos_neg)
loss_part3 = nn.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
avg_cost = nn.mean(loss_part3)
less = tensor.cast(cf.less_than(cos_neg, cos_pos), dtype='float32')
correct = nn.reduce_sum(less)
self.cost = avg_cost
self.metrics["correct"] = correct
self.metrics["cos_pos"] = cos_pos
def get_cost_op(self):
return self.cost
def get_metrics(self):
return self.metrics
def optimizer(self):
learning_rate = 0.01#envs.get_global_env("hyper_parameters.base_lr", None, self._namespace)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=learning_rate)
#sgd_optimizer.minimize(avg_cost)
return sgd_optimizer
def infer_net(self, parameter_list):
self.train_net()
import re
import sys
import collections
import os
import six
import time
import numpy as np
import paddle.fluid as fluid
import paddle
import csv
import io
from fleetrec.core.reader import Reader
from fleetrec.core.utils import envs
class TrainReader(Reader):
def init(self):
pass
def _process_line(self, l):
tag_size = 4
neg_size = 3
l = l.strip().split(",")
pos_index = int(l[0])
pos_tag = []
pos_tag.append(pos_index)
text_raw = l[1].split()
text = [int(w) for w in text_raw]
neg_tag = []
max_iter = 100
now_iter = 0
sum_n = 0
while (sum_n < neg_size):
now_iter += 1
if now_iter > max_iter:
print("error : only one class")
sys.exit(0)
rand_i = np.random.randint(0, tag_size)
if rand_i != pos_index:
neg_index = rand_i
neg_tag.append(neg_index)
sum_n += 1
# if n > 0 and len(text) > n:
# #yield None
# return None, None, None
return text, pos_tag, neg_tag
def generate_sample(self, line):
def data_iter():
text, pos_tag, neg_tag = self._process_line(line)
if text is None:
yield None
return
yield [('text', text), ('pos_tag', pos_tag), ('neg_tag', neg_tag)]
return data_iter
此差异已折叠。
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
train:
trainer:
# for cluster training
strategy: "async"
epochs: 10
workspace: "fleetrec.models.rank.text_classification"
reader:
batch_size: 5
class: "{workspace}/reader.py"
train_data_path: "{workspace}/train_data"
model:
models: "{workspace}/model.py"
save:
increment:
dirname: "increment"
epoch_interval: 1
save_last: True
inference:
dirname: "inference"
epoch_interval: 100
save_last: True
import paddle.fluid as fluid
import math
from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase
import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def train_net(self):
""" network definition """
data = fluid.data(name="input", shape=[None, max_len], dtype='int64')
label = fluid.data(name="label", shape=[None, 1], dtype='int64')
seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64')
# embedding layer
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
emb = fluid.layers.sequence_unpad(emb, length=seq_len)
# convolution layer
conv = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=cnn_dim,
filter_size=cnn_filter_size,
act="tanh",
pool_type="max")
# full connect layer
fc_1 = fluid.layers.fc(input=[conv], size=hid_dim)
# softmax layer
prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
#if is_prediction:
# return prediction
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
self.cost = avg_cost
self.metrics["acc"] = cos_pos
def get_cost_op(self):
return self.cost
def get_metrics(self):
return self.metrics
def optimizer(self):
learning_rate = 0.01#envs.get_global_env("hyper_parameters.base_lr", None, self._namespace)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=learning_rate)
#sgd_optimizer.minimize(avg_cost)
return sgd_optimizer
def infer_net(self, parameter_list):
self.train_net()
import re
import sys
import collections
import os
import six
import time
import numpy as np
import paddle.fluid as fluid
import paddle
import csv
import io
from fleetrec.core.reader import Reader
from fleetrec.core.utils import envs
class TrainReader(Reader):
def init(self):
pass
def _process_line(self, l):
l = l.strip().split(" ")
data = l[0:10]
seq_len = l[10:11]
label = l[11:]
return data, label, seq_len
def generate_sample(self, line):
def data_iter():
data, label, seq_len = self._process_line(line)
if data is None:
yield None
return
yield [('data', data), ('label', label), ('seq_len', seq_len)]
return data_iter
12 27 13 0 25 52 89 20 39 4 9 1
78 10 61 58 29 79 85 16 46 41 9 1
81 77 44 4 5 57 43 97 42 89 6 0
7 77 86 3 98 89 56 24 7 59 9 1
65 89 99 27 65 98 16 89 42 0 3 0
66 14 48 38 66 5 56 89 98 19 4 1
78 7 10 20 77 16 37 43 59 23 6 1
84 95 28 35 0 82 55 19 13 81 7 0
34 32 98 37 43 51 6 38 20 40 9 0
75 36 13 51 70 24 62 90 32 91 7 1
13 5 49 21 57 21 67 85 74 14 1 0
68 13 86 16 52 50 23 11 65 99 1 1
15 20 75 55 15 90 54 54 15 91 9 0
44 56 15 88 57 3 62 53 89 57 8 1
23 8 40 25 60 33 8 69 44 88 7 1
63 94 5 43 23 70 31 67 21 55 6 0
44 11 64 92 10 37 30 84 19 71 5 1
89 18 71 13 16 58 47 60 77 87 7 1
13 48 56 39 98 53 32 93 13 91 7 0
56 78 67 68 27 11 77 48 45 10 1 1
52 12 14 5 2 8 3 36 33 59 6 0
86 42 91 81 2 9 21 0 44 7 9 1
96 27 82 55 81 30 91 41 91 58 2 1
97 69 76 47 80 62 23 30 87 22 7 1
42 56 25 47 42 18 80 53 15 57 7 0
34 73 75 88 61 79 40 74 87 87 6 1
7 91 9 24 42 60 76 31 10 13 4 0
21 1 46 59 61 54 99 54 89 55 5 1
67 21 1 29 88 5 3 85 39 22 5 1
90 99 7 8 17 77 73 3 32 10 5 0
30 44 26 32 37 74 90 71 42 29 9 1
79 68 3 24 21 37 35 3 76 23 6 1
3 66 7 4 2 88 94 64 47 81 6 1
10 48 16 49 96 93 61 97 84 39 3 1
73 28 67 59 89 92 17 24 52 71 3 1
98 4 35 62 91 2 78 51 72 93 1 1
37 42 96 10 48 49 84 45 59 47 5 1
13 24 7 49 63 78 29 75 45 92 7 1
1 6 95 23 38 34 85 94 33 47 6 1
99 63 65 39 72 73 91 20 16 45 9 0
35 8 81 24 62 0 95 0 52 46 4 1
58 66 88 42 86 94 91 8 18 92 7 0
12 62 56 43 99 31 63 80 11 7 4 1
22 36 1 39 69 20 56 75 17 15 7 0
25 97 62 50 99 98 32 2 98 75 7 1
7 59 98 68 62 19 28 28 60 27 7 0
39 63 43 45 43 11 40 81 4 25 6 0
81 95 27 84 71 45 87 65 40 50 1 0
82 21 69 55 71 92 52 65 90 16 3 0
24 6 5 22 36 34 66 71 3 52 2 0
5 14 66 71 49 10 52 81 32 14 1 0
8 94 52 23 60 27 43 19 89 91 9 0
26 14 36 37 28 94 46 96 11 80 8 1
89 19 77 66 48 75 62 58 90 81 8 1
25 43 95 21 25 81 39 79 9 74 9 0
25 2 64 27 67 36 59 68 99 66 5 1
13 46 41 55 89 93 79 83 32 52 6 0
49 77 57 9 91 49 86 50 32 5 2 0
94 7 53 54 70 69 5 51 59 91 5 1
24 72 94 13 17 12 2 67 0 89 6 1
70 38 19 27 38 87 72 41 98 84 6 1
89 76 82 4 69 64 97 77 88 58 9 0
67 41 99 1 80 38 96 24 67 59 3 1
42 83 50 19 97 99 99 50 46 76 8 1
43 99 63 40 93 15 3 57 11 0 1 0
16 65 31 43 89 37 98 63 29 69 8 1
39 5 65 45 12 82 46 87 82 93 8 0
34 69 82 13 4 20 92 58 46 83 2 1
46 79 87 57 87 23 72 95 37 88 8 0
41 72 81 71 60 15 32 1 9 97 3 0
84 98 15 78 39 82 89 74 46 32 9 0
16 18 92 80 50 44 98 45 15 41 3 1
74 78 81 40 17 65 38 21 27 9 1 0
14 69 68 50 57 11 62 2 89 54 6 0
70 29 79 29 44 56 33 27 25 4 3 1
44 20 87 67 65 41 93 37 99 78 1 1
93 57 87 11 33 40 21 3 47 87 9 1
8 3 24 49 99 48 40 22 99 41 2 0
19 90 9 83 93 22 36 96 44 73 7 1
4 73 2 88 79 90 32 48 45 12 5 0
24 58 34 67 85 62 84 48 14 79 5 1
54 69 19 18 59 78 84 48 61 46 4 0
72 69 95 26 30 74 49 30 95 61 8 0
73 29 46 39 48 30 97 63 89 34 9 1
51 32 44 22 70 69 91 81 74 52 3 0
99 66 89 71 31 42 5 40 21 12 6 0
58 26 59 56 91 49 79 57 57 74 6 1
30 36 59 74 6 30 17 1 99 38 4 0
43 48 77 86 67 25 38 36 3 91 4 1
67 24 51 34 37 8 98 76 84 13 1 1
73 47 88 15 32 99 67 26 28 89 3 1
91 66 11 86 5 12 15 43 79 89 1 1
15 60 43 58 61 0 62 32 98 29 9 0
80 36 78 42 70 52 2 10 42 41 6 1
36 16 46 34 96 39 8 21 86 54 5 1
80 72 13 1 28 49 73 90 81 34 1 0
73 64 86 9 94 49 44 38 47 64 2 0
69 90 69 36 60 45 39 7 41 72 8 0
31 86 54 82 81 77 93 99 68 63 1 1
95 76 97 36 40 12 4 95 59 64 4 1
88 20 64 40 27 11 96 40 41 73 6 0
28 72 70 43 34 54 98 43 29 63 5 0
78 72 4 47 47 38 73 8 65 40 3 1
91 64 51 93 8 78 53 15 42 32 4 0
34 36 45 9 16 0 51 40 90 29 2 1
80 93 65 80 11 19 26 61 29 8 4 0
94 11 60 36 58 98 43 90 64 1 1 0
42 54 89 86 80 72 81 48 19 67 5 0
81 25 30 60 59 20 75 38 75 29 6 0
84 16 48 28 23 20 53 13 32 90 1 0
58 31 77 68 27 88 51 97 70 93 8 1
63 67 85 6 35 22 28 65 8 7 3 0
54 75 93 58 98 9 15 37 61 38 6 1
56 24 50 62 63 47 9 4 58 30 8 1
64 91 32 68 50 90 51 86 52 6 1 1
55 50 46 41 28 1 11 39 75 9 1 0
23 27 98 73 25 7 89 48 7 44 4 1
86 98 68 1 74 46 15 92 59 25 9 1
95 86 72 13 33 60 62 83 96 84 1 0
9 58 37 50 57 16 78 0 21 80 2 0
82 94 74 42 3 60 61 93 34 22 3 1
16 97 97 14 47 50 90 35 9 58 5 0
70 94 82 42 85 88 59 58 6 68 9 0
14 58 24 44 8 29 12 18 26 80 7 0
22 23 7 82 39 28 96 92 23 40 5 1
40 31 72 94 20 81 89 4 42 1 5 0
57 63 71 41 28 2 39 67 90 54 6 0
9 74 4 41 11 31 15 21 44 32 6 1
31 28 66 66 61 78 72 80 82 88 3 1
79 18 1 59 35 62 0 72 78 97 7 0
14 19 30 63 38 37 12 15 54 15 6 1
54 91 37 79 60 35 55 62 94 84 7 1
10 55 78 96 45 55 35 56 54 70 6 1
23 46 15 93 66 11 32 45 74 25 4 0
51 55 9 9 88 59 21 66 87 12 1 1
90 22 38 66 12 9 30 48 55 85 1 1
39 23 82 29 57 76 79 56 3 19 2 0
7 72 76 15 90 23 40 40 33 39 4 1
60 64 34 11 18 18 38 39 53 37 1 1
85 72 51 47 83 90 32 96 78 23 9 1
85 51 96 31 83 70 57 65 15 0 6 0
41 11 56 94 40 6 62 86 68 83 7 0
34 82 44 30 2 2 94 62 41 27 6 1
54 86 50 83 76 65 0 87 80 70 7 0
97 50 65 78 2 90 28 5 12 56 5 1
34 19 68 93 11 9 14 87 22 70 9 0
63 77 27 20 20 37 65 51 29 29 9 1
22 79 98 57 56 97 43 49 4 80 4 1
6 4 35 54 4 36 1 79 85 35 6 0
12 55 68 61 91 43 49 5 93 27 8 0
64 22 69 16 63 20 28 60 13 35 7 1
9 19 60 89 62 29 47 33 6 13 4 0
14 15 39 86 47 75 7 70 57 60 6 1
90 63 12 43 28 46 39 97 83 42 6 0
49 3 3 64 59 46 30 13 61 10 2 0
79 47 29 47 54 38 50 66 18 63 5 1
98 67 1 22 66 32 91 77 63 33 3 0
72 22 10 27 28 44 29 66 71 1 7 0
20 52 19 23 9 38 1 93 83 73 5 0
88 57 22 64 93 66 20 90 78 2 7 1
90 86 41 28 14 25 86 73 7 21 4 0
63 91 0 29 2 78 86 76 9 20 4 1
3 57 91 37 21 85 80 99 18 79 1 1
69 95 36 6 85 47 83 83 61 52 4 0
72 4 34 16 59 78 56 70 27 44 9 1
58 42 6 53 21 7 83 38 86 66 5 0
22 86 22 21 86 22 83 38 62 19 4 0
14 63 20 53 98 76 10 22 35 76 9 1
16 88 13 66 37 33 11 40 61 97 2 1
60 9 98 35 51 11 98 73 67 26 6 1
25 48 87 93 58 58 15 9 23 13 7 1
61 47 47 36 97 22 63 35 9 38 5 1
94 49 41 38 0 81 59 39 13 65 3 0
88 82 71 96 76 16 57 24 72 36 5 1
28 46 8 95 94 86 63 1 42 63 6 0
12 95 29 66 64 77 19 26 73 53 4 0
19 5 52 34 13 62 6 4 25 58 5 0
18 39 39 56 73 29 5 15 13 82 1 1
50 66 99 67 76 25 43 12 24 67 9 0
74 56 61 97 23 63 22 63 6 83 2 1
10 96 13 49 43 20 58 19 99 58 7 1
2 95 31 4 99 91 27 90 85 32 3 0
41 23 20 71 41 75 75 35 16 12 3 1
21 33 87 57 19 27 94 36 80 10 6 0
8 0 25 74 14 61 86 8 42 82 9 0
23 33 91 19 84 99 95 92 29 31 8 0
94 94 5 6 98 23 37 65 14 25 6 1
42 16 39 32 2 20 86 81 90 91 8 0
72 39 20 63 88 52 65 81 77 96 4 0
48 73 65 75 89 36 75 36 11 35 8 0
79 74 3 29 63 20 76 46 8 82 5 0
7 46 38 77 79 92 71 98 30 35 6 0
44 69 93 31 22 68 91 70 32 86 5 0
45 38 77 87 64 44 69 19 28 82 9 0
93 63 92 84 22 44 51 94 4 99 9 0
77 10 49 29 59 55 44 7 95 39 2 0
10 85 99 9 91 29 64 14 50 24 6 1
74 4 21 12 77 36 71 51 50 31 9 1
66 76 28 18 23 49 33 31 6 44 1 1
92 50 90 64 95 58 93 4 78 88 6 1
69 79 76 47 46 26 30 40 33 58 8 1
97 12 87 82 6 18 57 49 49 58 1 1
70 79 55 86 29 88 55 39 17 74 5 1
65 51 45 62 54 17 59 12 29 79 5 0
5 63 82 51 54 97 54 36 57 46 3 0
74 77 52 10 12 9 34 95 2 0 5 0
50 20 22 89 50 70 55 98 80 50 1 0
61 80 7 3 78 36 44 37 90 18 9 0
81 13 55 57 88 81 66 55 18 34 2 1
52 30 54 70 28 56 48 82 67 20 8 1
0 41 15 63 27 90 12 16 56 79 3 0
69 89 54 1 93 10 15 2 25 59 8 0
74 99 17 93 96 82 38 77 98 85 4 0
8 59 17 92 60 21 59 76 55 73 2 1
53 56 79 19 29 94 86 96 62 39 3 1
23 44 25 63 41 94 65 10 8 40 9 1
7 18 80 43 20 70 14 59 72 17 9 0
84 97 79 14 37 64 23 68 8 24 2 0
63 94 98 77 8 62 10 77 63 56 4 0
8 63 74 34 49 22 52 54 44 93 3 0
94 48 92 58 82 48 53 34 96 25 2 0
33 15 3 95 48 93 9 69 44 77 7 1
69 72 80 77 64 24 52 21 36 49 2 0
59 34 54 66 60 19 76 79 16 70 5 1
8 83 9 91 67 79 31 20 31 88 2 0
64 95 46 95 78 63 4 60 66 63 7 1
10 39 78 45 36 4 89 94 68 75 7 0
81 52 70 11 48 15 40 63 29 14 8 1
94 49 30 14 53 12 53 42 77 82 8 1
40 88 46 20 54 84 76 15 2 73 2 1
71 50 79 54 17 58 30 16 17 99 1 1
74 79 74 61 61 36 28 39 89 36 6 0
53 45 45 23 51 32 93 26 10 8 3 0
1 97 6 67 88 20 41 63 49 6 8 0
3 64 41 19 41 80 75 71 69 90 8 0
31 90 38 93 52 0 38 86 41 68 9 1
50 94 53 9 73 59 94 7 24 57 3 0
87 11 4 62 96 7 0 59 46 11 6 1
77 67 56 88 45 62 10 51 86 27 6 1
62 62 59 99 83 84 79 97 56 37 5 0
19 55 0 37 44 44 2 7 54 50 5 1
23 60 11 83 6 48 20 77 54 31 6 0
27 53 52 30 3 70 57 38 47 96 5 0
75 14 5 83 72 46 47 64 14 12 7 0
29 95 36 63 59 49 38 44 13 15 2 1
38 3 70 89 2 94 89 74 33 6 8 1
28 56 49 43 83 34 7 63 36 13 7 0
25 90 23 85 50 65 36 10 64 38 5 0
35 94 48 38 99 71 42 39 61 75 8 1
28 73 34 22 51 8 52 98 74 19 8 1
12 40 65 12 7 96 73 65 12 90 5 0
42 42 48 16 80 14 48 29 29 45 5 0
58 20 4 0 69 99 15 4 16 4 1 1
93 30 90 5 23 63 25 30 99 32 7 1
91 23 20 26 84 78 58 76 58 90 5 1
33 2 36 59 55 9 79 34 92 57 9 0
80 63 84 73 22 40 70 94 59 34 5 0
49 95 50 32 90 22 18 66 46 32 2 0
47 72 3 94 33 78 87 43 11 67 5 0
76 44 86 81 95 48 79 46 11 65 8 1
59 51 97 75 17 5 40 59 32 62 6 0
41 13 58 7 54 84 8 84 27 55 1 0
24 80 44 26 86 99 68 80 81 22 9 0
12 45 16 44 66 76 33 53 3 20 9 0
22 3 79 6 32 38 75 66 15 25 9 1
51 48 26 53 33 26 18 74 9 39 5 1
35 67 89 91 29 81 23 52 19 11 6 0
64 50 43 1 43 49 19 20 84 19 8 0
34 4 9 77 24 61 55 82 42 76 9 0
37 84 94 33 67 60 3 95 78 8 9 0
82 10 54 12 47 23 78 97 6 51 5 0
70 40 38 47 5 38 83 70 37 90 2 0
42 21 62 27 43 47 82 80 88 49 4 0
68 68 67 12 38 13 32 30 93 27 3 1
5 44 98 28 5 81 20 56 10 34 9 1
40 46 11 33 73 62 68 70 66 85 4 0
9 46 11 84 6 31 18 89 66 32 1 1
6 78 44 98 77 29 69 39 62 78 1 0
47 90 18 0 3 8 12 20 51 75 4 1
21 29 74 19 12 29 41 22 63 47 8 1
22 59 64 62 18 89 19 92 87 8 8 0
6 21 24 58 14 53 18 93 62 15 8 0
20 33 88 25 37 52 1 72 74 11 2 0
90 49 28 53 28 80 22 81 0 46 9 0
87 31 51 27 15 31 68 93 5 4 7 1
21 72 60 2 24 79 22 24 77 61 9 0
20 4 6 40 28 14 16 78 58 99 7 1
80 35 98 20 91 35 47 29 3 19 2 1
57 21 24 61 60 39 83 34 53 2 2 0
74 86 78 78 18 44 20 94 85 71 4 1
27 48 44 92 10 18 74 54 25 85 2 0
74 77 28 75 74 91 69 36 95 68 7 0
32 84 17 18 55 79 59 57 21 69 2 1
69 77 40 98 83 40 4 66 39 83 1 1
63 24 32 39 75 92 81 49 2 51 5 1
35 40 84 71 3 16 82 91 44 52 8 0
21 78 66 4 57 27 21 89 4 34 7 1
94 18 57 49 88 26 29 76 56 67 6 0
14 91 71 30 5 36 28 74 16 73 3 1
93 36 43 46 77 44 59 19 56 84 3 0
11 16 2 67 11 96 20 91 20 59 2 1
72 79 26 99 90 71 56 46 35 99 3 0
29 87 20 40 13 14 14 40 61 27 6 0
41 64 28 51 56 52 87 67 37 91 6 1
33 14 5 30 99 54 27 80 54 55 4 1
60 44 73 91 71 53 54 95 59 81 6 0
69 33 11 83 4 53 34 39 43 84 1 0
73 31 19 4 50 20 66 73 94 88 4 0
30 49 41 76 5 21 88 69 76 3 2 0
18 50 27 76 67 38 87 16 52 87 5 1
33 36 80 8 43 82 89 76 37 3 5 0
98 21 61 24 58 13 9 85 56 74 1 1
84 27 50 96 9 56 30 31 85 65 1 1
65 74 40 2 8 40 18 57 30 38 1 1
76 44 64 6 10 32 84 70 74 24 1 1
14 29 59 34 27 8 0 37 27 68 3 0
6 47 5 77 15 41 93 49 59 83 4 1
39 88 43 89 32 98 82 0 5 12 9 0
78 79 30 26 58 6 9 58 37 65 8 1
25 28 66 41 70 87 76 62 29 39 7 1
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册