random_reader.py 2.6 KB
Newer Older
F
frankwhzhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

16 17 18
import numpy as np
import paddle.fluid as fluid

F
frankwhzhang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs
from collections import defaultdict


class TrainReader(Reader):
    def init(self):
        self.user_vocab = envs.get_global_env("hyper_parameters.user_vocab",
                                              None, "train.model")
        self.item_vocab = envs.get_global_env("hyper_parameters.item_vocab",
                                              None, "train.model")
        self.item_len = envs.get_global_env("hyper_parameters.item_len", None,
                                            "train.model")
        self.batch_size = envs.get_global_env("batch_size", None,
                                              "train.reader")

    def reader_creator(self):
        def reader():
            user_slot_name = []
            for j in range(self.batch_size):
                user_slot_name.append(
                    [int(np.random.randint(self.user_vocab))])
            item_slot_name = np.random.randint(
                self.item_vocab, size=(self.batch_size,
                                       self.item_len)).tolist()
            length = [self.item_len] * self.batch_size
            label = np.random.randint(
                2, size=(self.batch_size, self.item_len)).tolist()
            output = []
            output.append(user_slot_name)
            output.append(item_slot_name)
            output.append(length)
            output.append(label)

            yield output

        return reader

    def generate_batch_from_trainfiles(self, files):
        return fluid.io.batch(
            self.reader_creator(), batch_size=self.batch_size)

    def generate_sample(self, line):
        """
        the file is not used
        """

        def reader():
            """
            This function needs to be implemented by the user, based on data format
            """
            pass

        return reader