node.py 17.6 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from . import ps_pb2 as pslib
X
xiexionghang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


class Server(object):
    """
        A Server basic class.
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12

52
    def add_sparse_table(self, table_id, strategy):
X
xiexionghang 已提交
53 54 55
        """
        Args:
            table_id(int): id of sparse params table
56
            strategy(dict): the config dict.
X
xiexionghang 已提交
57 58 59
        Returns:
            return None 
        """
60

X
xiexionghang 已提交
61 62 63 64 65 66 67
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
68 69
        if strategy is None:
            strategy = dict()
X
xiexionghang 已提交
70 71 72
        table = self._server.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
73 74 75 76 77 78 79 80 81 82 83

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                    'sparse_show_click_decay_rate', 'sparse_delete_threshold']

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

84
        support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable']
85 86 87 88
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
89
                    "support sparse_table_class: [ 'DownpourSparseTable' , 'DownpourSparseSSDTable'], \
90 91 92 93 94 95
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

96
        if table_class in support_table_calss:
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)

            support_accessor_class = [
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor'
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)"
                table1.deconverter = "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)"
                table2.deconverter = "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"

    def add_dense_table(self, table_id, param_var, grad_var, strategy,
                        sparse_table_names):
X
xiexionghang 已提交
159 160 161
        """
        Args:
            table_id(int): id of sparse params table
162
            strategy(dict): the dense config dict.
X
xiexionghang 已提交
163 164 165 166
        Returns:
            return None 
        """
        fea_dim = 0
167 168 169 170 171 172
        dense_param_vars = []
        for p in param_var:
            if p.name not in sparse_table_names:
                dense_param_vars.append(p)

        for param in dense_param_vars:
X
xiexionghang 已提交
173 174 175 176 177 178 179 180 181 182
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
183 184 185

        if strategy is None:
            strategy = dict()
X
xiexionghang 已提交
186 187
        table = self._server.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
188 189 190 191 192 193 194 195 196 197
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
X
xiexionghang 已提交
198
        table.type = pslib.PS_DENSE_TABLE
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
X
xiexionghang 已提交
216 217
        table.accessor.fea_dim = fea_dim

218 219
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
                            strategy, sparse_table_names):
X
xiexionghang 已提交
220 221
        """
        Args:
222 223
            table_id(int): id of datanorm table
            strategy(dict): the datanorm config dict.
X
xiexionghang 已提交
224 225 226 227
        Returns:
            return None 
        """
        fea_dim = 0
228 229 230 231 232 233
        dense_param_vars = []
        for p in param_var:
            if p.name not in sparse_table_names:
                dense_param_vars.append(p)

        for param in dense_param_vars:
X
xiexionghang 已提交
234 235 236 237 238 239 240 241 242 243
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
244 245 246 247 248 249 250 251 252 253
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

X
xiexionghang 已提交
254 255
        table = self._server.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
256 257
        table.table_class = strategy.get('datanorm_table_class',
                                         "DownpourDenseDoubleTable")
X
xiexionghang 已提交
258
        table.type = pslib.PS_DENSE_TABLE
259 260 261 262 263 264 265
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'datanorm_accessor_class', "DownpourDenseValueDoubleAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
                                                           "summarydouble")
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
X
xiexionghang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
        return self._server


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
        self._worker = pslib.DownpourTrainerParameter()

289
    def add_sparse_table(self, table_id, slot_key_vars, slot_value_vars):
X
xiexionghang 已提交
290 291 292 293 294 295 296 297 298 299
        """
        Args:
            table_id(int): id of sparse params table
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
                if [var.name for var in slot_key_vars
                    ] == self._worker.sparse_table[table_id].slot_key:
                    if [var.name for var in slot_value_vars
                        ] == self._worker.sparse_table[table_id].slot_value:
                        if [
                                var.name + "@GRAD" for var in slot_value_vars
                        ] == self._worker.sparse_table[table_id].slot_gradient:
                            return
                        else:
                            raise ValueError(
                                "sparse table %s slot_gradient error" %
                                table_id)

                    else:
                        raise ValueError("sparse table %s slot_value error" %
                                         table_id)
                else:
                    raise ValueError("sparse table %s slot_key error" %
                                     table_id)

X
xiexionghang 已提交
320 321 322 323 324 325 326
        table = self._worker.sparse_table.add()
        table.table_id = table_id
        table.slot_key.extend([var.name for var in slot_key_vars])
        table.slot_value.extend([var.name for var in slot_value_vars])
        table.slot_gradient.extend(
            [var.name + "@GRAD" for var in slot_value_vars])

327 328
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
                        dense_start_table_id, sparse_table_names):
X
xiexionghang 已提交
329 330 331 332 333 334 335 336 337 338
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        sparse_table_name_grad = []
        for name in sparse_table_names:
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
            if p.name not in sparse_table_names:
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()

X
xiexionghang 已提交
356 357
        for table in self._worker.dense_table:
            if table.table_id == table_id:
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                desc_dense_param_name = list(self._worker.dense_table[
                    table_id - dense_start_table_id].dense_variable_name)
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
                    desc_dense_grad_name = list(self._worker.dense_table[
                        table_id - dense_start_table_id]
                                                .dense_gradient_variable_name)
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
                        return
                    else:
                        raise ValueError(
                            "dense table %s dense_gradient_variable_name error"
                            % table_id)
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

X
xiexionghang 已提交
377 378
        table = self._worker.dense_table.add()
        table.table_id = table_id
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

        def cmp_fc(x, y):
            if x.startswith("fc_") and y.startswith("fc_"):
                index_x = x.find('.')
                index_y = y.find('.')
                if index_x > 0 and index_y > 0:
                    num_x = x[3:index_x]
                    num_y = y[3:index_y]
                    if num_x.isdigit() and num_y.isdigit():
                        if int(num_x) < int(num_y):
                            return -1
                        if int(num_x) > int(num_y):
                            return 1
                        if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
                            return -1
                        if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
                            return 1
            if x < y:
                return -1
            else:
                return 1

        table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
X
xiexionghang 已提交
402
        table.dense_gradient_variable_name.extend(
403
            sorted(dense_grad_name, cmp_fc))
X
xiexionghang 已提交
404 405 406 407 408 409

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
        return self._worker