cluster_trainer.py 4.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function

T
tangwei 已提交
21
import paddle.fluid as fluid
T
tangwei 已提交
22 23 24 25
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

T
tangwei 已提交
26 27
from fleetrec.core.utils import envs
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
T
tangwei 已提交
28 29


T
tangwei 已提交
30
class ClusterTrainer(TranspileTrainer):
T
tangwei 已提交
31 32 33 34
    def processor_register(self):
        role = PaddleCloudRoleMaker()
        fleet.init(role)

T
tangwei12 已提交
35
        if fleet.is_server():
T
tangwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('train_pass', self.train)
            self.regist_context_processor('terminal_pass', self.terminal)

    def build_strategy(self):
        mode = envs.get_global_env("train.strategy.mode")
        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        return strategy

    def init(self, context):
T
tangwei 已提交
64
        self.model.train_net()
T
tangwei 已提交
65 66 67
        optimizer = self.model.optimizer()
        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
T
tangwei 已提交
68
        optimizer.minimize(self.model.get_cost_op())
T
tangwei 已提交
69 70 71 72

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
T
tangwei 已提交
73 74 75 76 77 78 79 80
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
T
tangwei 已提交
81 82 83 84 85 86 87 88
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.init_server()
        fleet.run_server()
        context['is_exit'] = True

    def train(self, context):
T
tangwei 已提交
89
        self._exe.run(fleet.startup_program)
T
tangwei 已提交
90 91 92 93 94 95
        fleet.init_worker()

        dataset = self._get_dataset()
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
T
tangwei 已提交
96 97 98 99 100
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)
T
tangwei 已提交
101
            self.save(i, "train", is_fleet=True)
T
tangwei 已提交
102
        context['status'] = 'terminal_pass'
T
tangwei 已提交
103 104 105 106 107 108 109 110 111
        fleet.stop_worker()

    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True