single_trainer_yamlopt.py 8.8 KB
Newer Older
X
fix  
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""

from __future__ import print_function

import time
import logging
import os
import paddle.fluid as fluid

from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
from paddlerec.core.reader import SlotReader

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


class SingleTrainerYamlOpt(TranspileTrainer):
    def __init__(self, config=None):
        super(TranspileTrainer, self).__init__(config)
        self._env = self._config
        device = envs.get_global_env("device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
        self.processor_register()
        self._model = {}
        self._dataset = {}
        envs.set_global_envs(self._config)
        envs.update_workspace()

    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('startup_pass', self.startup)
        self.regist_context_processor('train_pass', self.executor_train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        context['status'] = 'init_pass'

    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_type = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(), " change reader to DataLoader")
            reader_type = "DataLoader"
        padding = 0

        reader = envs.path_adapter("paddlerec.core.utils") + "/dataset_instance.py"
        pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
            reader, "slot", "slot", self._config_yaml, "fake", \
            sparse_slots.replace(" ", "#"), dense_slots.replace(" ", "#"), str(padding))

        type_name = envs.get_global_env(name + "type")
        if type_name == "QueueDataset":
            dataset = fluid.DatasetFactory().create_dataset()
            dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
            dataset.set_pipe_command(pipe_cmd)
            train_data_path = envs.get_global_env(name + "data_path")
            file_list = [
                os.path.join(train_data_path, x)
                for x in os.listdir(train_data_path)
            ]
            dataset.set_filelist(file_list)
            for model_dict in self._env["executor"]:
                if model_dict["dataset_name"] == dataset_name:
                    model = self._model[model_dict["name"]][3]
                    inputs = model.get_inputs()
                    dataset.set_use_var(inputs)
                    break
        else:
            pass

        return dataset

    def init(self, context):
        for model_dict in self._env["executor"]:
            self._model[model_dict["name"]] = [None] * 4
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
            opt_lr = envs.get_global_env("hyper_parameters.optimizer.learning_rate")
            opt_strategy = envs.get_global_env("hyper_parameters.optimizer.strategy")
            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    model_path = model_dict["model"].replace("{workspace}", envs.path_adapter(self._env["workspace"]))
                    model = envs.lazy_instance_by_fliename(model_path, "Model")(self._env)
                    model._data_var = model.input_data(dataset_name=model_dict["dataset_name"])
                    model.net(None)
                    optimizer = model._build_optimizer(opt_name, opt_lr, opt_strategy)
                    optimizer.minimize(model._cost)
            self._model[model_dict["name"]][0] = train_program
            self._model[model_dict["name"]][1] = startup_program
            self._model[model_dict["name"]][2] = scope
            self._model[model_dict["name"]][3] = model

        for dataset in self._env["dataset"]:
            self._dataset[dataset["name"]] = self._create_dataset(dataset["name"])

        context['status'] = 'startup_pass'

    def startup(self, context):
        for model_dict in self._env["executor"]:
            with fluid.scope_guard(self._model[model_dict["name"]][2]):            
                self._exe.run(self._model[model_dict["name"]][1])
        context['status'] = 'train_pass'

    def executor_train(self, context):
        epochs = int(self._env["epochs"])
        for j in range(epochs):
            for model_dict in self._env["executor"]:
                reader_name = model_dict["dataset_name"]
                name = "dataset." + reader_name + "."
                begin_time = time.time()
                if envs.get_global_env(name + "type") == "DataLoader":
                    self._executor_dataloader_train(model_dict)
                else:
                    self._executor_dataset_train(model_dict)
                end_time = time.time()
                seconds = end_time - begin_time
            print("epoch {} done, time elasped: {}".format(j, seconds))
        context['status'] = "terminal_pass"

    def _executor_dataset_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        reader = self._dataset[reader_name]
        with fluid.scope_guard(scope):
            self._exe.train_from_dataset(
                program=program,
                dataset=reader,
                fetch_list=fetch_vars,
                fetch_info=fetch_alias,
                print_period=fetch_period)


    def _executor_dataloader_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        self._model[model_name][1] = fluid.compiler.CompiledProgram(
            self._model[model_name][1]).with_data_parallel(loss_name=model_class.get_avg_cost().name)
        fetch_vars = []
        fetch_alias = []
        fetch_period = 20
        metrics = model_class.get_metrics()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        metrics_varnames = []
        metrics_format = []
        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))
        for name, var in model_class.items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = self._dataset[reader_name]
        reader.start()
        batch_id = 0
        scope = self._model[model_name][2]
        prorgram = self._model[model_name][0]
        with fluid.scope_guard(scope):
            try:
                while True:
                    metrics_rets = self._exe.run(program=program,
                                                 fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % self.fetch_period == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

    def terminal(self, context):
        context['is_exit'] = True