dataset.py 5.7 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os

import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.utils import dataloader_instance
from paddlerec.core.reader import SlotReader
from paddlerec.core.trainer import EngineMode
C
Chengmo 已提交
24
from paddlerec.core.utils.util import split_files
C
Chengmo 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

__all__ = ["DatasetBase", "DataLoader", "QueueDataset"]


class DatasetBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def get_dataset(self, context):
        pass


class DataLoader(DatasetBase):
    def __init__(self, context):
        pass

    def get_dataloader(self, context, dataset_name, dataloader):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip()
        dense_slots = envs.get_global_env(name + "dense_slots", "").strip()
        batch_size = envs.get_global_env(name + "batch_size")

        reader_class = envs.get_global_env(name + "data_converter")
        reader_class_name = envs.get_global_env(name + "reader_class_name",
                                                "Reader")

        if sparse_slots == "" and dense_slots == "":
            reader = dataloader_instance.dataloader_by_name(
                reader_class,
                dataset_name,
                context["config_yaml"],
                context,
                reader_class_name=reader_class_name)

            reader_class = envs.lazy_instance_by_fliename(reader_class,
                                                          reader_class_name)
            reader_ins = reader_class(context["config_yaml"])
        else:
            reader = dataloader_instance.slotdataloader_by_name(
                "", dataset_name, context["config_yaml"], context)
            reader_ins = SlotReader(context["config_yaml"])
        if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
            dataloader.set_sample_list_generator(reader)
M
malin10 已提交
71 72
        elif hasattr(reader_ins, 'batch_tensor_creator'):
            dataloader.set_batch_generator(reader)
C
Chengmo 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        else:
            dataloader.set_sample_generator(reader, batch_size)
        return dataloader


class QueueDataset(DatasetBase):
    def __init__(self, context):
        pass

    def create_dataset(self, dataset_name, context):
        name = "dataset." + dataset_name + "."
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(), "Reader To Dataloader")
            type_name = "DataLoader"

        if type_name == "DataLoader":
            return None
        else:
            return self._get_dataset(dataset_name, context)

    def _get_dataset(self, dataset_name, context):
        name = "dataset." + dataset_name + "."
        reader_class = envs.get_global_env(name + "data_converter")
        reader_class_name = envs.get_global_env(name + "reader_class_name",
                                                "Reader")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../../utils', 'dataset_instance.py')
        sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip()
        dense_slots = envs.get_global_env(name + "dense_slots", "").strip()
        if sparse_slots == "" and dense_slots == "":
            pipe_cmd = "python {} {} {} {}".format(reader, reader_class,
                                                   reader_class_name,
                                                   context["config_yaml"])
        else:
            if sparse_slots == "":
                sparse_slots = "?"
            if dense_slots == "":
                dense_slots = "?"
            padding = envs.get_global_env(name + "padding", 0)
            pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
                reader, "slot", "slot", context["config_yaml"], "fake",
                sparse_slots.replace(" ", "?"),
                dense_slots.replace(" ", "?"), str(padding))

        batch_size = envs.get_global_env(name + "batch_size")
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(batch_size)
        dataset.set_pipe_command(pipe_cmd)
        train_data_path = envs.get_global_env(name + "data_path")
C
Chengmo 已提交
123

C
Chengmo 已提交
124 125 126 127 128
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]
        if context["engine"] == EngineMode.LOCAL_CLUSTER:
C
Chengmo 已提交
129 130
            file_list = split_files(file_list, context["fleet"].worker_index(),
                                    context["fleet"].worker_num())
C
Chengmo 已提交
131
        print("File_list: {}".format(file_list))
C
Chengmo 已提交
132
        dataset.set_filelist(file_list)
T
tangwei 已提交
133
        for model_dict in context["phases"]:
C
Chengmo 已提交
134 135 136 137 138 139 140 141 142 143 144
            if model_dict["dataset_name"] == dataset_name:
                model = context["model"][model_dict["name"]]["model"]
                thread_num = int(model_dict["thread_num"])
                dataset.set_thread(thread_num)
                if context["is_infer"]:
                    inputs = model._infer_data_var
                else:
                    inputs = model._data_var
                dataset.set_use_var(inputs)
                break
        return dataset