single_trainer.py 5.9 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging
import paddle.fluid as fluid

T
rename  
tangwei 已提交
23 24
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
from fleetrec.core.utils import envs
T
tangwei 已提交
25
import numpy as np
T
tangwei 已提交
26 27 28 29 30 31

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


T
tangwei 已提交
32
class SingleTrainer(TranspileTrainer):
T
tangwei 已提交
33 34 35
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
T
tangwei 已提交
36 37 38 39 40 41

        if envs.get_platform() == "LINUX":
            self.regist_context_processor('train_pass', self.dataset_train)
        else:
            self.regist_context_processor('train_pass', self.dataloader_train)

T
tangwei 已提交
42 43 44 45
        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)

    def init(self, context):
T
tangwei 已提交
46
        self.model.train_net()
T
tangwei 已提交
47
        optimizer = self.model.optimizer()
T
tangwei 已提交
48
        optimizer.minimize((self.model.get_cost_op()))
T
tangwei 已提交
49 50 51 52

        self.fetch_vars = []
        self.fetch_alias = []
        self.fetch_period = self.model.get_fetch_period()
T
tangwei 已提交
53

T
tangwei 已提交
54 55 56 57
        metrics = self.model.get_metrics()
        if metrics:
            self.fetch_vars = metrics.values()
            self.fetch_alias = metrics.keys()
T
tangwei 已提交
58 59
        context['status'] = 'train_pass'

T
tangwei 已提交
60
    def dataloader_train(self, context):
T
tangwei 已提交
61
        self._exe.run(fluid.default_startup_program())
M
malin10 已提交
62
        reader = self._get_dataloader("TRAIN")
T
tangwei 已提交
63
        epochs = envs.get_global_env("train.epochs")
T
tangwei 已提交
64

T
tangwei 已提交
65 66
        program = fluid.compiler.CompiledProgram(
            fluid.default_main_program()).with_data_parallel(
T
tangwei 已提交
67
            loss_name=self.model.get_cost_op().name)
T
tangwei 已提交
68 69 70 71 72 73 74 75

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
T
tangwei 已提交
76
            metrics_varnames.append(var.name)
T
tangwei 已提交
77 78 79
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)
T
tangwei 已提交
80

T
tangwei 已提交
81 82 83 84 85 86 87 88 89 90
        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
T
tangwei 已提交
91
                    metrics.extend(metrics_rets)
T
tangwei 已提交
92 93

                    if batch_id % 10 == 0 and batch_id != 0:
T
tangwei 已提交
94
                        print(metrics_format.format(*metrics))
T
tangwei 已提交
95 96 97
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
M
malin10 已提交
98
            self.save(epoch, "train", is_fleet=False)
T
tangwei 已提交
99 100 101 102 103 104

        context['status'] = 'infer_pass'

    def dataset_train(self, context):
        # run startup program at once
        self._exe.run(fluid.default_startup_program())
M
malin10 已提交
105
        dataset = self._get_dataset("TRAIN")
T
tangwei 已提交
106 107 108
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
T
tangwei 已提交
109 110 111 112
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
M
malin10 已提交
113 114
                                         print_period=1,
                                         debug=True)
T
tangwei 已提交
115 116 117 118
            self.save(i, "train", is_fleet=False)
        context['status'] = 'infer_pass'

    def infer(self, context):
M
malin10 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        infer_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(infer_program, startup_program):
                self.model.infer_net()

        reader = self._get_dataloader("Evaluate")

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_infer_results().items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)
        self._exe.run(startup_program)

        for (epoch, model_dir) in self.increment_models:
            print("Begin to infer epoch {}, model_dir: {}".format(epoch, model_dir))
            program = infer_program.clone()
            fluid.io.load_persistables(self._exe, model_dir, program)
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % 2 == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
 
T
tangwei 已提交
161 162 163 164 165 166
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True