# MMoE ## 简介 多任务模型通过学习不同任务的联系和差异,可提高每个任务的学习效率和质量。多任务学习的的框架广泛采用shared-bottom的结构,不同任务间共用底部的隐层。这种结构本质上可以减少过拟合的风险,但是效果上可能受到任务差异和数据分布带来的影响。 论文[《Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts》]( https://www.kdd.org/kdd2018/accepted-papers/view/modeling-task-relationships-in-multi-task-learning-with-multi-gate-mixture- )中提出了一个Multi-gate Mixture-of-Experts(MMOE)的多任务学习结构。MMOE模型刻画了任务相关性,基于共享表示来学习特定任务的函数,避免了明显增加参数的缺点。 ## 快速开始 PaddleRec内置了demo小数据方便用户快速使用模型,训练命令如下 ```shell python -m paddlerec.run -m paddlerec.models.multitask.mmoe ``` ## 模型效果 根据原论文,我们在开源数据集Census-income Data上验证模型效果 参数见config.yaml中的hyper_parameters部分,batch_size:32 epochs:400 两个任务的auc分别为: 1.income max_mmoe_test_auc_income:0.94937 mean_mmoe_test_auc_income:0.94465 2.marital max_mmoe_test_auc_marital:0.99419 mean_mmoe_test_auc_marital:0.99324