model.py 7.8 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
add din  
yaoxuefeng 已提交
15 16
import paddle.fluid as fluid

17 18
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
Y
add din  
yaoxuefeng 已提交
19 20 21 22 23


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
T
tangwei 已提交
24

25 26 27 28 29 30 31 32 33 34 35
    def _init_hyper_parameters(self):
        self.item_emb_size = envs.get_global_env(
            "hyper_parameters.item_emb_size", 64)
        self.cat_emb_size = envs.get_global_env(
            "hyper_parameters.cat_emb_size", 64)
        self.act = envs.get_global_env("hyper_parameters.act", "sigmoid")
        self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
                                             False)
        #significant for speeding up the training process
        self.use_DataLoader = envs.get_global_env(
            "hyper_parameters.use_DataLoader", False)
Y
yaoxuefeng 已提交
36 37 38
        self.item_count = envs.get_global_env("hyper_parameters.item_count",
                                              63001)
        self.cat_count = envs.get_global_env("hyper_parameters.cat_count", 801)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    def input_data(self, is_infer=False, **kwargs):
        seq_len = -1
        self.data_var = []
        hist_item_seq = fluid.data(
            name="hist_item_seq", shape=[None, seq_len], dtype="int64")
        self.data_var.append(hist_item_seq)

        hist_cat_seq = fluid.data(
            name="hist_cat_seq", shape=[None, seq_len], dtype="int64")
        self.data_var.append(hist_cat_seq)

        target_item = fluid.data(
            name="target_item", shape=[None], dtype="int64")
        self.data_var.append(target_item)

        target_cat = fluid.data(name="target_cat", shape=[None], dtype="int64")
        self.data_var.append(target_cat)

        label = fluid.data(name="label", shape=[None, 1], dtype="float32")
        self.data_var.append(label)

        mask = fluid.data(
            name="mask", shape=[None, seq_len, 1], dtype="float32")
        self.data_var.append(mask)

        target_item_seq = fluid.data(
            name="target_item_seq", shape=[None, seq_len], dtype="int64")
        self.data_var.append(target_item_seq)

        target_cat_seq = fluid.data(
            name="target_cat_seq", shape=[None, seq_len], dtype="int64")
        self.data_var.append(target_cat_seq)

        train_inputs = [hist_item_seq] + [hist_cat_seq] + [target_item] + [
            target_cat
        ] + [label] + [mask] + [target_item_seq] + [target_cat_seq]
        return train_inputs

Y
add din  
yaoxuefeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def din_attention(self, hist, target_expand, mask):
        """activation weight"""

        hidden_size = hist.shape[-1]

        concat = fluid.layers.concat(
            [hist, target_expand, hist - target_expand, hist * target_expand],
            axis=2)
        atten_fc1 = fluid.layers.fc(name="atten_fc1",
                                    input=concat,
                                    size=80,
                                    act=self.act,
                                    num_flatten_dims=2)
        atten_fc2 = fluid.layers.fc(name="atten_fc2",
                                    input=atten_fc1,
                                    size=40,
                                    act=self.act,
                                    num_flatten_dims=2)
        atten_fc3 = fluid.layers.fc(name="atten_fc3",
                                    input=atten_fc2,
                                    size=1,
                                    num_flatten_dims=2)
        atten_fc3 += mask
        atten_fc3 = fluid.layers.transpose(x=atten_fc3, perm=[0, 2, 1])
        atten_fc3 = fluid.layers.scale(x=atten_fc3, scale=hidden_size**-0.5)
        weight = fluid.layers.softmax(atten_fc3)
        out = fluid.layers.matmul(weight, hist)
        out = fluid.layers.reshape(x=out, shape=[0, hidden_size])
        return out
T
tangwei 已提交
107

108 109 110 111 112 113 114 115 116 117
    def net(self, inputs, is_infer=False):
        hist_item_seq = inputs[0]
        hist_cat_seq = inputs[1]
        target_item = inputs[2]
        target_cat = inputs[3]
        label = inputs[4]
        mask = inputs[5]
        target_item_seq = inputs[6]
        target_cat_seq = inputs[7]

Y
add din  
yaoxuefeng 已提交
118 119 120 121 122
        item_emb_attr = fluid.ParamAttr(name="item_emb")
        cat_emb_attr = fluid.ParamAttr(name="cat_emb")

        hist_item_emb = fluid.embedding(
            input=hist_item_seq,
Y
yaoxuefeng 已提交
123
            size=[self.item_count, self.item_emb_size],
Y
add din  
yaoxuefeng 已提交
124 125 126 127 128
            param_attr=item_emb_attr,
            is_sparse=self.is_sparse)

        hist_cat_emb = fluid.embedding(
            input=hist_cat_seq,
Y
yaoxuefeng 已提交
129
            size=[self.cat_count, self.cat_emb_size],
Y
add din  
yaoxuefeng 已提交
130 131 132 133 134
            param_attr=cat_emb_attr,
            is_sparse=self.is_sparse)

        target_item_emb = fluid.embedding(
            input=target_item,
Y
yaoxuefeng 已提交
135
            size=[self.item_count, self.item_emb_size],
Y
add din  
yaoxuefeng 已提交
136 137 138 139 140
            param_attr=item_emb_attr,
            is_sparse=self.is_sparse)

        target_cat_emb = fluid.embedding(
            input=target_cat,
Y
yaoxuefeng 已提交
141
            size=[self.cat_count, self.cat_emb_size],
Y
add din  
yaoxuefeng 已提交
142 143 144 145 146
            param_attr=cat_emb_attr,
            is_sparse=self.is_sparse)

        target_item_seq_emb = fluid.embedding(
            input=target_item_seq,
Y
yaoxuefeng 已提交
147
            size=[self.item_count, self.item_emb_size],
Y
add din  
yaoxuefeng 已提交
148 149 150 151 152
            param_attr=item_emb_attr,
            is_sparse=self.is_sparse)

        target_cat_seq_emb = fluid.embedding(
            input=target_cat_seq,
Y
yaoxuefeng 已提交
153
            size=[self.cat_count, self.cat_emb_size],
Y
add din  
yaoxuefeng 已提交
154 155 156 157 158
            param_attr=cat_emb_attr,
            is_sparse=self.is_sparse)

        item_b = fluid.embedding(
            input=target_item,
Y
yaoxuefeng 已提交
159
            size=[self.item_count, 1],
Y
add din  
yaoxuefeng 已提交
160 161
            param_attr=fluid.initializer.Constant(value=0.0))

T
tangwei 已提交
162 163
        hist_seq_concat = fluid.layers.concat(
            [hist_item_emb, hist_cat_emb], axis=2)
Y
add din  
yaoxuefeng 已提交
164 165 166 167 168 169 170
        target_seq_concat = fluid.layers.concat(
            [target_item_seq_emb, target_cat_seq_emb], axis=2)
        target_concat = fluid.layers.concat(
            [target_item_emb, target_cat_emb], axis=1)

        out = self.din_attention(hist_seq_concat, target_seq_concat, mask)
        out_fc = fluid.layers.fc(name="out_fc",
T
tangwei 已提交
171 172 173
                                 input=out,
                                 size=self.item_emb_size + self.cat_emb_size,
                                 num_flatten_dims=1)
Y
add din  
yaoxuefeng 已提交
174 175 176
        embedding_concat = fluid.layers.concat([out_fc, target_concat], axis=1)

        fc1 = fluid.layers.fc(name="fc1",
T
tangwei 已提交
177 178 179
                              input=embedding_concat,
                              size=80,
                              act=self.act)
Y
add din  
yaoxuefeng 已提交
180 181 182 183
        fc2 = fluid.layers.fc(name="fc2", input=fc1, size=40, act=self.act)
        fc3 = fluid.layers.fc(name="fc3", input=fc2, size=1)
        logit = fc3 + item_b

T
tangwei 已提交
184 185 186
        loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=logit, label=label)

Y
add din  
yaoxuefeng 已提交
187 188 189 190 191 192 193
        avg_loss = fluid.layers.mean(loss)
        self._cost = avg_loss

        self.predict = fluid.layers.sigmoid(logit)
        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
T
tangwei 已提交
194 195
                                                     label=label_int,
                                                     slide_steps=0)
Y
add din  
yaoxuefeng 已提交
196 197
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
198 199
        if is_infer:
            self._infer_results["AUC"] = auc_var