model.py 7.5 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict

import paddle.fluid as fluid

from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
        self.is_distributed = True if envs.get_trainer(
        ) == "CtrTrainer" else False
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number", None)
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim", None)
        self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
                                             False)
        self.use_batchnorm = envs.get_global_env(
            "hyper_parameters.use_batchnorm", False)
        self.filters = envs.get_global_env("hyper_parameters.filters",
                                           [38, 40, 42, 44])
        self.filter_size = envs.get_global_env("hyper_parameters.filter_size",
                                               [1, 9])
        self.pooling_size = envs.get_global_env(
            "hyper_parameters.pooling_size", [2, 2, 2, 2])
        self.new_filters = envs.get_global_env("hyper_parameters.new_filters",
                                               [3, 3, 3, 3])
Y
yaoxuefeng 已提交
47
        self.hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes")
Y
yaoxuefeng 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        self.num_field = envs.get_global_env("hyper_parameters.num_field",
                                             None)
        self.act = envs.get_global_env("hyper_parameters.act", None)

    def net(self, inputs, is_infer=False):
        raw_feat_idx = self._sparse_data_var[1]  # (batch_size * num_field) * 1
        raw_feat_value = self._dense_data_var[0]  # batch_size * num_field
        self.label = self._sparse_data_var[0]  # batch_size * 1

        init_value_ = 0.1

        feat_idx = raw_feat_idx
        feat_value = fluid.layers.reshape(
            raw_feat_value,
            [-1, self.num_field, 1])  # batch_size * num_field * 1

        # ------------------------- Embedding layers --------------------------

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=self.is_sparse,
            is_distributed=self.is_distributed,
            dtype='float32',
            size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0,
                    scale=init_value_ /
                    math.sqrt(float(self.sparse_feature_dim))))
        )  # (batch_size * num_field) * 1 * embedding_size
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, self.num_field, self.sparse_feature_dim
                   ])  # batch_size * num_field * embedding_size
        feat_embeddings = feat_embeddings * feat_value  # batch_size * num_field * embedding_size
        featuer_generation_input = fluid.layers.reshape(
            feat_embeddings,
            shape=[0, 1, self.num_field, self.sparse_feature_dim])
        new_feature_list = []
        new_feature_field_num = 0
Y
yaoxuefeng 已提交
89 90 91

        # ------------------------- Feature Generation --------------------------

Y
yaoxuefeng 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        for i in range(len(self.filters)):
            conv_out = fluid.layers.conv2d(
                featuer_generation_input,
                num_filters=self.filters[i],
                filter_size=self.filter_size,
                padding="SAME",
                act="tanh")
            pool_out = fluid.layers.pool2d(
                conv_out,
                pool_size=[self.pooling_size[i], 1],
                pool_type="max",
                pool_stride=[self.pooling_size[i], 1])
            pool_out_shape = pool_out.shape[2]
            new_feature_field_num += self.new_filters[i] * pool_out_shape
            flat_pool_out = fluid.layers.flatten(pool_out)
            recombination_out = fluid.layers.fc(input=flat_pool_out,
                                                size=self.new_filters[i] *
                                                self.sparse_feature_dim *
                                                pool_out_shape,
                                                act='tanh')
            new_feature_list.append(recombination_out)
            featuer_generation_input = pool_out
        new_featues = fluid.layers.concat(new_feature_list, axis=1)
        new_features_map = fluid.layers.reshape(
            new_featues,
            shape=[0, new_feature_field_num, self.sparse_feature_dim])
        all_features = fluid.layers.concat(
            [feat_embeddings, new_features_map], axis=1)
        interaction_list = []
        for i in range(all_features.shape[1]):
            for j in range(i + 1, all_features.shape[1]):
                interaction_list.append(
                    fluid.layers.reduce_sum(
                        all_features[:, i, :] * all_features[:, j, :],
                        dim=1,
                        keep_dim=True))
Y
yaoxuefeng 已提交
128 129 130 131 132 133
        new_feature_dnn_input = fluid.layers.concat(interaction_list, axis=1)
        feat_embeddings_dnn_input = fluid.layers.reshape(
            feat_embeddings,
            shape=[0, self.num_field * self.sparse_feature_dim])
        dnn_input = fluid.layers.concat(
            [feat_embeddings_dnn_input, new_feature_dnn_input], axis=1)
Y
yaoxuefeng 已提交
134

Y
yaoxuefeng 已提交
135
        # ------------------------- DNN --------------------------
Y
yaoxuefeng 已提交
136

Y
yaoxuefeng 已提交
137
        fcs = [dnn_input]
Y
yaoxuefeng 已提交
138

Y
yaoxuefeng 已提交
139 140 141 142 143 144 145 146 147
        for size in self.hidden_layers:
            output = fluid.layers.fc(
                input=fcs[-1],
                size=size,
                act=self.act,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Normal(
                        scale=1.0 / math.sqrt(fcs[-1].shape[1]))))
            fcs.append(output)
Y
yaoxuefeng 已提交
148

Y
yaoxuefeng 已提交
149 150
        predict = fluid.layers.fc(
            input=fcs[-1],
Y
yaoxuefeng 已提交
151
            size=1,
Y
yaoxuefeng 已提交
152 153 154
            act="sigmoid",
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(fcs[-1].shape[1]))))
Y
yaoxuefeng 已提交
155 156 157

        # ------------------------- Predict --------------------------

Y
yaoxuefeng 已提交
158 159 160 161
        self.predict = predict

        cost = fluid.layers.log_loss(
            input=self.predict, label=fluid.layers.cast(self.label, "float32"))
Y
yaoxuefeng 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174
        avg_cost = fluid.layers.reduce_sum(cost)

        self._cost = avg_cost

        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
                                                     label=label_int,
                                                     slide_steps=0)
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
        if is_infer:
            self._infer_results["AUC"] = auc_var