get_slot_data.py 3.1 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlerec.core.utils import envs
Y
yaoxuefeng 已提交
16 17
import paddle.fluid.incubate.data_generator as dg

Y
yaoxuefeng 已提交
18 19 20 21 22 23
try:
    import cPickle as pickle
except ImportError:
    import pickle


C
Chengmo 已提交
24
class Reader(dg.MultiSlotDataGenerator):
Y
yaoxuefeng 已提交
25 26
    def __init__(self, config):
        dg.MultiSlotDataGenerator.__init__(self)
T
tangwei 已提交
27
        _config = envs.load_yaml(config)
Y
yaoxuefeng 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40

    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 46,
            231, 4008, 7393
        ]
        self.cont_diff_ = [
            self.cont_max_[i] - self.cont_min_[i]
            for i in range(len(self.cont_min_))
        ]
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)
C
Chengmo 已提交
41
        # load preprocessed feature dict
Y
yaoxuefeng 已提交
42
        self.feat_dict_name = "sample_data/feat_dict_10.pkl2"
Y
yaoxuefeng 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        self.feat_dict_ = pickle.load(open(self.feat_dict_name, 'rb'))

    def _process_line(self, line):
        features = line.rstrip('\n').split('\t')
        feat_idx = []
        feat_value = []
        for idx in self.continuous_range_:
            if features[idx] == '':
                feat_idx.append(0)
                feat_value.append(0.0)
            else:
                feat_idx.append(self.feat_dict_[idx])
                feat_value.append(
                    (float(features[idx]) - self.cont_min_[idx - 1]) /
                    self.cont_diff_[idx - 1])
        for idx in self.categorical_range_:
            if features[idx] == '' or features[idx] not in self.feat_dict_:
                feat_idx.append(0)
                feat_value.append(0.0)
            else:
                feat_idx.append(self.feat_dict_[features[idx]])
                feat_value.append(1.0)
        label = [int(features[0])]
        return feat_idx, feat_value, label

    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """

        def data_iter():
            feat_idx, feat_value, label = self._process_line(line)
            s = ""
            for i in [('feat_idx', feat_idx), ('feat_value', feat_value),
                      ('label', label)]:
                k = i[0]
                v = i[1]
                for j in v:
                    s += " " + k + ":" + str(j)
X
xujiaqi01 已提交
82
            print(s.strip())
Y
yaoxuefeng 已提交
83 84 85 86 87
            yield None

        return data_iter


C
Chengmo 已提交
88
reader = Reader(
Y
yaoxuefeng 已提交
89
    "../config.yaml")  # run this file in original folder to find config.yaml
Y
yaoxuefeng 已提交
90 91
reader.init()
reader.run_from_stdin()