dataloader_instance.py 6.8 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
17 18 19
from paddlerec.core.utils.envs import lazy_instance_by_fliename
from paddlerec.core.utils.envs import get_global_env
from paddlerec.core.utils.envs import get_runtime_environ
X
xujiaqi01 已提交
20
from paddlerec.core.reader import SlotReader
T
tangwei 已提交
21

X
fix  
xjqbest 已提交
22

X
fix  
xjqbest 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35
def dataloader_by_name(readerclass, dataset_name, yaml_file):
    reader_class = lazy_instance_by_fliename(readerclass, "TrainReader")
    name = "dataset." + dataset_name + "."
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
    reader = reader_class(yaml_file)
    reader.init()
X
fix  
xjqbest 已提交
36

X
fix  
xjqbest 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader


def slotdataloader_by_name(readerclass, dataset_name, yaml_file):
    name = "dataset." + dataset_name + "."
    reader_name = "SlotReader"
    data_path = get_global_env(name + "data_path")

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]
    sparse = get_global_env(name + "sparse_slots")
    dense = get_global_env(name + "dense_slots")
    padding = get_global_env(name + "padding", 0)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader
T
tangwei 已提交
98

X
fix  
xjqbest 已提交
99

T
tangwei 已提交
100 101 102
def dataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "TrainReader"
M
malin10 已提交
103
        namespace = "train.reader"
T
tangwei 已提交
104 105 106
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "EvaluateReader"
M
malin10 已提交
107
        namespace = "evaluate.reader"
T
tangwei 已提交
108 109
        data_path = get_global_env("test_data_path", None, namespace)

110
    if data_path.startswith("paddlerec::"):
T
tangwei 已提交
111 112 113 114
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

T
tangwei 已提交
115 116
    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

T
tangwei 已提交
117
    reader_class = lazy_instance_by_fliename(readerclass, reader_name)
T
tangwei 已提交
118 119 120 121 122 123 124
    reader = reader_class(yaml_file)
    reader.init()

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
T
tangwei 已提交
125
                    line = line.rstrip('\n')
T
tangwei 已提交
126 127 128 129 130 131 132 133 134
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values
T
tangwei 已提交
135

Y
add din  
yaoxuefeng 已提交
136 137 138 139 140
    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
T
tangwei 已提交
141
    return gen_reader
X
xujiaqi01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187


def slotdataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "SlotReader"
        namespace = "train.reader"
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "SlotReader"
        namespace = "evaluate.reader"
        data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

    sparse = get_global_env("sparse_slots", None, namespace)
    dense = get_global_env("dense_slots", None, namespace)
    padding = get_global_env("padding", 0, namespace)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader