model.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
import paddle.fluid as fluid
import math

from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase
from collections import OrderedDict

class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
    
    def init_network(self):
        self.cross_num = envs.get_global_env("hyper_parameters.cross_num", None, self._namespace)
        self.dnn_hidden_units = envs.get_global_env("hyper_parameters.dnn_hidden_units", None, self._namespace)
        self.l2_reg_cross = envs.get_global_env("hyper_parameters.l2_reg_cross", None, self._namespace)
        self.dnn_use_bn = envs.get_global_env("hyper_parameters.dnn_use_bn", None, self._namespace)
        self.clip_by_norm = envs.get_global_env("hyper_parameters.clip_by_norm", None, self._namespace)
        cat_feat_num = envs.get_global_env("hyper_parameters.cat_feat_num", None, self._namespace)
        cat_feat_dims_dict = OrderedDict()
        for line in open(cat_feat_num):
            spls = line.strip().split()
            assert len(spls) == 2
            cat_feat_dims_dict[spls[0]] = int(spls[1])
        self.cat_feat_dims_dict = cat_feat_dims_dict if cat_feat_dims_dict else OrderedDict(
        )
        self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse", None, self._namespace)

        self.dense_feat_names = ['I' + str(i) for i in range(1, 14)]
        self.sparse_feat_names = ['C' + str(i) for i in range(1, 27)]

        # {feat_name: dims}
        self.feat_dims_dict = OrderedDict(
            [(feat_name, 1) for feat_name in self.dense_feat_names])
        self.feat_dims_dict.update(self.cat_feat_dims_dict)

        self.net_input = None
        self.loss = None
    
    def _create_embedding_input(self, data_dict):
        # sparse embedding
        sparse_emb_dict = OrderedDict((name, fluid.embedding(
            input=fluid.layers.cast(
                data_dict[name], dtype='int64'),
            size=[
                self.feat_dims_dict[name] + 1,
                6 * int(pow(self.feat_dims_dict[name], 0.25))
            ],
            is_sparse=self.is_sparse)) for name in self.sparse_feat_names)

        # combine dense and sparse_emb
        dense_input_list = [
            data_dict[name] for name in data_dict if name.startswith('I')
        ]
        sparse_emb_list = list(sparse_emb_dict.values())

        sparse_input = fluid.layers.concat(sparse_emb_list, axis=-1)
        sparse_input = fluid.layers.flatten(sparse_input)

        dense_input = fluid.layers.concat(dense_input_list, axis=-1)
        dense_input = fluid.layers.flatten(dense_input)
        dense_input = fluid.layers.cast(dense_input, 'float32')

        net_input = fluid.layers.concat([dense_input, sparse_input], axis=-1)

        return net_input
    
    def _deep_net(self, input, hidden_units, use_bn=False, is_test=False):
        for units in hidden_units:
            input = fluid.layers.fc(input=input, size=units)
            if use_bn:
                input = fluid.layers.batch_norm(input, is_test=is_test)
            input = fluid.layers.relu(input)
        return input

    def _cross_layer(self, x0, x, prefix):
        input_dim = x0.shape[-1]
        w = fluid.layers.create_parameter(
            [input_dim], dtype='float32', name=prefix + "_w")
        b = fluid.layers.create_parameter(
            [input_dim], dtype='float32', name=prefix + "_b")
        xw = fluid.layers.reduce_sum(x * w, dim=1, keep_dim=True)  # (N, 1)
        return x0 * xw + b + x, w
    
    def _cross_net(self, input, num_corss_layers):
        x = x0 = input
        l2_reg_cross_list = []
        for i in range(num_corss_layers):
            x, w = self._cross_layer(x0, x, "cross_layer_{}".format(i))
            l2_reg_cross_list.append(self._l2_loss(w))
        l2_reg_cross_loss = fluid.layers.reduce_sum(
            fluid.layers.concat(
                l2_reg_cross_list, axis=-1))
        return x, l2_reg_cross_loss
    
    def _l2_loss(self, w):
        return fluid.layers.reduce_sum(fluid.layers.square(w))
    
    def train_net(self):
        self.init_network()
        self.target_input = fluid.data(
            name='label', shape=[None, 1], dtype='float32')
        data_dict = OrderedDict()
        for feat_name in self.feat_dims_dict:
            data_dict[feat_name] = fluid.data(
                name=feat_name, shape=[None, 1], dtype='float32')
        
        self.net_input = self._create_embedding_input(data_dict)
        
        deep_out = self._deep_net(self.net_input, self.dnn_hidden_units, self.dnn_use_bn, False)

        cross_out, l2_reg_cross_loss = self._cross_net(self.net_input,
                                                       self.cross_num)  
        
        last_out = fluid.layers.concat([deep_out, cross_out], axis=-1)
        logit = fluid.layers.fc(last_out, 1)

        self.prob = fluid.layers.sigmoid(logit)
        self._data_var = [self.target_input] + [
            data_dict[dense_name] for dense_name in self.dense_feat_names
        ] + [data_dict[sparse_name] for sparse_name in self.sparse_feat_names]

        # auc
        prob_2d = fluid.layers.concat([1 - self.prob, self.prob], 1)
        label_int = fluid.layers.cast(self.target_input, 'int64')
        auc_var, batch_auc_var, self.auc_states = fluid.layers.auc(
            input=prob_2d, label=label_int, slide_steps=0)
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
        

        # logloss
        logloss = fluid.layers.log_loss(self.prob, self.target_input)
        self.avg_logloss = fluid.layers.reduce_mean(logloss)

        # reg_coeff * l2_reg_cross
        l2_reg_cross_loss = self.l2_reg_cross * l2_reg_cross_loss
        self.loss = self.avg_logloss + l2_reg_cross_loss
        self._cost = self.loss

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer

    def infer_net(self, parameter_list):
        self.deepfm_net()