README_EN.md 18.5 KB
Newer Older
C
chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
([简体中文](./README.md)|English)
<p align="center">
<img align="center" src="doc/imgs/logo.png">
<p>
<p align="center">
<img align="center" src="doc/imgs/overview_en.png">
<p>


<h2 align="center">What is recommendation system ?</h2>
<p align="center">
<img align="center" src="doc/imgs/rec-overview-en.png">
<p>

- Recommendation system helps users quickly find useful and interesting information from massive data.

- Recommendation system is also a silver bullet to attract users, retain users, increase users' stickness or conversionn.

  > Who can better use the recommendation system, who can gain more advantage in the fierce competition.
  >
  > At the same time, there are many problems in the process of using the recommendation system, such as: huge data, complex model, inefficient distributed training, and so on.

<h2 align="center">What is PaddleRec ?</h2>


- A quick start tool of search & recommendation algorithm based on [PaddlePaddle](https://www.paddlepaddle.org.cn/documentation/docs/en/beginners_guide/index_en.html)
- A complete solution of recommendation system for beginners, developers and researchers.
- Recommendation algorithm library including content-understanding, match, recall, rank, multi-task, re-rank etc.


    |         Type          |                                 Algorithm                                 |  CPU  |   GPU   | Parameter-Server | Multi-GPU | Paper                                                                                                                                                                                                       |
    | :-------------------: | :-----------------------------------------------------------------------: | :---: | :-----: | :--------------: | :-------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
    | Content-Understanding | [Text-Classifcation](models/contentunderstanding/classification/model.py) |   ✓   |    ✓    |        ✓         |     x     | [EMNLP 2014][Convolutional neural networks for sentence classication](https://www.aclweb.org/anthology/D14-1181.pdf)                                                                                        |
    | Content-Understanding |         [TagSpace](models/contentunderstanding/tagspace/model.py)         |   ✓   |    ✓    |        ✓         |     x     | [EMNLP 2014][TagSpace: Semantic Embeddings from Hashtags](https://www.aclweb.org/anthology/D14-1194.pdf)                                                                                                    |
    |         Match         |                    [DSSM](models/match/dssm/model.py)                     |   ✓   |    ✓    |        ✓         |     x     | [CIKM 2013][Learning Deep Structured Semantic Models for Web Search using Clickthrough Data](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf)             |
    |         Match         |        [MultiView-Simnet](models/match/multiview-simnet/model.py)         |   ✓   |    ✓    |        ✓         |     x     | [WWW 2015][A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/frp1159-songA.pdf)             |
    |        Recall         |                   [TDM](models/treebased/tdm/model.py)                    |   ✓   | >=1.8.0 |        ✓         |  >=1.8.0  | [KDD 2018][Learning Tree-based Deep Model for Recommender Systems](https://arxiv.org/pdf/1801.02294.pdf)                                                                                                    |
    |        Recall         |                [fasttext](models/recall/fasttext/model.py)                |   ✓   |    ✓    |        x         |     x     | [EACL 2017][Bag of Tricks for Efficient Text Classification](https://www.aclweb.org/anthology/E17-2068.pdf)                                                                                                 |
    |        Recall         |                [Word2Vec](models/recall/word2vec/model.py)                |   ✓   |    ✓    |        ✓         |     x     | [NIPS 2013][Distributed Representations of Words and Phrases and their Compositionality](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf) |
    |        Recall         |                     [SSR](models/recall/ssr/model.py)                     |   ✓   |    ✓    |        ✓         |     ✓     | [SIGIR 2016][Multi-Rate Deep Learning for Temporal Recommendation](http://sonyis.me/paperpdf/spr209-song_sigir16.pdf)                                                                                       |
    |        Recall         |                 [Gru4Rec](models/recall/gru4rec/model.py)                 |   ✓   |    ✓    |        ✓         |     ✓     | [2015][Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939)                                                                                                      |
    |        Recall         |             [Youtube_dnn](models/recall/youtube_dnn/model.py)             |   ✓   |    ✓    |        ✓         |     ✓     | [RecSys 2016][Deep Neural Networks for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/45530.pdf)                                               |
    |        Recall         |                     [NCF](models/recall/ncf/model.py)                     |   ✓   |    ✓    |        ✓         |     ✓     | [WWW 2017][Neural Collaborative Filtering](https://arxiv.org/pdf/1708.05031.pdf)                                                                                                                            |
    |        Recall         |                     [GNN](models/recall/gnn/model.py)                     |   ✓   |    ✓    |        ✓         |     ✓     | [AAAI 2019][Session-based Recommendation with Graph Neural Networks](https://arxiv.org/abs/1811.00855)                                                                                                      |
    |         Rank          |      [Logistic Regression](models/rank/logistic_regression/model.py)      |   ✓   |    x    |        ✓         |     x     | /                                                                                                                                                                                                           |
    |         Rank          |                      [Dnn](models/rank/dnn/model.py)                      |   ✓   |    ✓    |        ✓         |     ✓     | /                                                                                                                                                                                                           |
    |         Rank          |                       [FM](models/rank/fm/model.py)                       |   ✓   |    x    |        ✓         |     x     | [IEEE Data Mining 2010][Factorization machines](https://analyticsconsultores.com.mx/wp-content/uploads/2019/03/Factorization-Machines-Steffen-Rendle-Osaka-University-2010.pdf)                             |
    |         Rank          |                      [FFM](models/rank/ffm/model.py)                      |   ✓   |    x    |        ✓         |     x     | [RECSYS 2016][Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/doi/pdf/10.1145/2959100.2959134)                                                                                    |
    |         Rank          |                      [FNN](models/rank/fnn/model.py)                      |   ✓   |    x    |        ✓         |     x     | [ECIR 2016][Deep Learning over Multi-field Categorical Data](https://arxiv.org/pdf/1601.02376.pdf)                                                                                                          |
    |         Rank          |            [Deep Crossing](models/rank/deep_crossing/model.py)            |   ✓   |    x    |        ✓         |     x     | [ACM 2016][Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features](https://www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf)                                                   |
    |         Rank          |                      [Pnn](models/rank/pnn/model.py)                      |   ✓   |    x    |        ✓         |     x     | [ICDM 2016][Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf)                                                                                               |
    |         Rank          |                      [DCN](models/rank/dcn/model.py)                      |   ✓   |    x    |        ✓         |     x     | [KDD 2017][Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754)                                                                                               |
    |         Rank          |                      [NFM](models/rank/nfm/model.py)                      |   ✓   |    x    |        ✓         |     x     | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777)                                                                             |
    |         Rank          |                      [AFM](models/rank/afm/model.py)                      |   ✓   |    x    |        ✓         |     x     | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf)                                                  |
    |         Rank          |                   [DeepFM](models/rank/deepfm/model.py)                   |   ✓   |    x    |        ✓         |     x     | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf)                                                                                 |
    |         Rank          |                  [xDeepFM](models/rank/xdeepfm/model.py)                  |   ✓   |    x    |        ✓         |     x     | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023)                                                       |
    |         Rank          |                      [DIN](models/rank/din/model.py)                      |   ✓   |    x    |        ✓         |     x     | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823)                                                                                     |
    |         Rank          |                     [DIEN](models/rank/dien/model.py)                     |   ✓   |    x    |        ✓         |     x     | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423)                                                              |
    |         Rank          |                      [BST](models/rank/BST/model.py)                      |   ✓   |    x    |        ✓         |     x     | [DLP-KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf)                                                                              |
    |         Rank          |                  [AutoInt](models/rank/AutoInt/model.py)                  |   ✓   |    x    |        ✓         |     x     | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf)                                                                       |
    |         Rank          |                [Wide&Deep](models/rank/wide_deep/model.py)                |   ✓   |    x    |        ✓         |     x     | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454)                                                                                               |
    |         Rank          |                    [FGCNN](models/rank/fgcnn/model.py)                    |   ✓   |    ✓    |        ✓         |     ✓     | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)                                                                      |
    |         Rank          |                  [Fibinet](models/rank/fibinet/model.py)                  |   ✓   |    ✓    |        ✓         |     ✓     | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf)                                                 |
    |         Rank          |                     [Flen](models/rank/flen/model.py)                     |   ✓   |    ✓    |        ✓         |     ✓     | [2019][FLEN: Leveraging Field for Scalable CTR Prediction]( https://arxiv.org/pdf/1911.04690.pdf)                                                                                                           |
    |      Multi-Task       |                  [ESMM](models/multitask/esmm/model.py)                   |   ✓   |    ✓    |        ✓         |     ✓     | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931)                                                              |
    |      Multi-Task       |                  [MMOE](models/multitask/mmoe/model.py)                   |   ✓   |    ✓    |        ✓         |     ✓     | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007)                                                       |
    |      Multi-Task       |           [ShareBottom](models/multitask/share-bottom/model.py)           |   ✓   |    ✓    |        ✓         |     ✓     | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf)                                                                                                               |
    |        Re-Rank        |                [Listwise](models/rerank/listwise/model.py)                |   ✓   |    ✓    |        ✓         |     x     | [2019][Sequential Evaluation and Generation Framework for Combinatorial Recommender System](https://arxiv.org/pdf/1902.00245.pdf)                                                                           |





<h2 align="center">Getting Started</h2>

### Environmental requirements
* Python 2.7/ 3.5 / 3.6 / 3.7
* PaddlePaddle  >= 1.7.2
* operating system: Windows/Mac/Linux

  > Linux is recommended for distributed training
  
### Installation

1. **Install by pip**
  ```bash
  python -m pip install paddle-rec
  ```
  > This method will download and install `paddlepaddle-v1.7.2-cpu`. If `PaddlePaddle` can not be installed automatically,You need to install `PaddlePaddle` manually,and then install `PaddleRec` again:
  > - Download [PaddlePaddle](https://pypi.org/project/paddlepaddle/1.7.2/#files) and install by pip.
  > - Install `PaddlePaddle` by pip,`python -m pip install paddlepaddle==1.7.2 -i https://mirror.baidu.com/pypi/simple`
  > - Other installation problems can be raised in [Paddle Issue](https://github.com/PaddlePaddle/Paddle/issues) or [PaddleRec Issue](https://github.com/PaddlePaddle/PaddleRec/issues)

2. **Install by source code**

  - Install PaddlePaddle  

    ```shell
    python -m pip install paddlepaddle==1.7.2 -i https://mirror.baidu.com/pypi/simple
    ```

  - Install PaddleRec by source code

    ```
    git clone https://github.com/PaddlePaddle/PaddleRec/
    cd PaddleRec
    python setup.py install
    ```

- Install PaddleRec-GPU  

  After installing `PaddleRec`,please install the appropriate version of `paddlepaddle-gpu` according to your environment (CUDA / cudnn),refer to the installation tutorial [Installation Manuals](https://www.paddlepaddle.org.cn/documentation/docs/en/install/index_en.html)


<h2 align="center">Quick Start</h2>

We take the `dnn` algorithm as an example to get start of `PaddleRec`, and we take 100 pieces of training data from [Criteo Dataset](https://www.kaggle.com/c/criteo-display-ad-challenge/):

```bash
# Training with cpu
python -m paddlerec.run -m paddlerec.models.rank.dnn  
```


<h2 align="center">Documentation</h2>

### Background
* [Recommendation System](doc/rec_background.md)
* [Distributed deep learning](doc/ps_background.md)

### Introductory Project
* [Get start of PaddleRec in ten minutes](https://aistudio.baidu.com/aistudio/projectdetail/559336)

### Introductory tutorial
* [Data](doc/slot_reader.md)
* [Model](doc/model.md)
* [Loacl Train](doc/train.md)
* [Distributed Train](doc/distributed_train.md)
* [Predict](doc/predict.md)
* [Serving](doc/serving.md)


### Advanced tutorial
* [Custom Reader](doc/custom_reader.md)
* [Custom Model](doc/model_develop.md)
* [Custom Training Process](doc/trainer_develop.md)
* [Configuration description of yaml](doc/yaml.md)
* [Design document of PaddleRec](doc/design.md)

### Benchmark
* [Benchmark](doc/benchmark.md)

### FAQ
* [Common Problem FAQ](doc/faq.md)


<h2 align="center">Community</h2>

<p align="center">
    <br>
    <img alt="Release" src="https://img.shields.io/badge/Release-0.1.0-yellowgreen">
    <img alt="License" src="https://img.shields.io/github/license/PaddlePaddle/PaddleRec">
    <img alt="Slack" src="https://img.shields.io/badge/Join-Slack-green">
    <br>
<p>

### Version history
- 2020.06.17 - PaddleRec v0.1.0
- 2020.06.03 - PaddleRec v0.0.2
- 2020.05.14 - PaddleRec v0.0.1
  
### License
[Apache 2.0 license](LICENSE)

### Contact us

For any feedback, please propose a [GitHub Issue](https://github.com/PaddlePaddle/PaddleRec/issues)

You can also communicate with us in the following ways:

- QQ group id:`861717190`
- Wechat account:`paddlerec2020`

<p align="center"><img width="200" height="200" margin="500" src="./doc/imgs/QQ_group.png"/>&#8194;&#8194;&#8194;&#8194;&#8194<img width="200" height="200"  src="doc/imgs/weixin_supporter.png"/></p>
<p align="center">PaddleRec QQ Group&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;PaddleRec Wechat account</p>