ctr_trainer.py 20.2 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15

X
xiexionghang 已提交
16 17 18 19
import sys
import time
import json
import datetime
T
tangwei 已提交
20 21
import numpy as np

X
xiexionghang 已提交
22 23
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
24
from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
X
xiexionghang 已提交
25

T
tangwei 已提交
26 27 28 29 30
from fleetrec.utils import fs as fs
from fleetrec.utils import util as util
from fleetrec.metrics.auc_metrics import AUCMetric
from fleetrec.models import base as model_basic
from fleetrec.reader import dataset
T
tangwei 已提交
31 32
from .trainer import Trainer

T
tangwei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

def wroker_numric_opt(value, env, opt):
    """
    numric count opt for workers
    Args:
        value: value for count
        env: mpi/gloo
        opt: count operator, SUM/MAX/MIN/AVG
    Return:
        count result
    """
    local_value = np.array([value])
    global_value = np.copy(local_value) * 0
    fleet._role_maker.all_reduce_worker(local_value, global_value, opt)
    return global_value[0]


def worker_numric_sum(value, env="mpi"):
    """R
    """
    return wroker_numric_opt(value, env, "sum")


def worker_numric_avg(value, env="mpi"):
    """R
    """
    return worker_numric_sum(value, env) / fleet.worker_num()


def worker_numric_min(value, env="mpi"):
    """R
    """
    return wroker_numric_opt(value, env, "min")


def worker_numric_max(value, env="mpi"):
    """R
    """
    return wroker_numric_opt(value, env, "max")


T
tangwei 已提交
74
class CtrPaddleTrainer(Trainer):
X
xiexionghang 已提交
75 76
    """R
    """
T
tangwei 已提交
77

X
xiexionghang 已提交
78
    def __init__(self, config):
X
xiexionghang 已提交
79 80
        """R
        """
T
tangwei 已提交
81
        Trainer.__init__(self, config)
T
tangwei 已提交
82
        config['output_path'] = util.get_absolute_path(
X
xiexionghang 已提交
83
            config['output_path'], config['io']['afs'])
T
tangwei 已提交
84 85

        self.global_config = config
X
xiexionghang 已提交
86
        self._metrics = {}
T
tangwei 已提交
87

T
tangwei 已提交
88
        self._path_generator = util.PathGenerator({
X
xiexionghang 已提交
89
            'templates': [
X
xiexionghang 已提交
90 91 92 93 94 95 96 97 98
                {'name': 'xbox_base_done', 'template': config['output_path'] + '/xbox_base_done.txt'},
                {'name': 'xbox_delta_done', 'template': config['output_path'] + '/xbox_patch_done.txt'},
                {'name': 'xbox_base', 'template': config['output_path'] + '/xbox/{day}/base/'},
                {'name': 'xbox_delta', 'template': config['output_path'] + '/xbox/{day}/delta-{pass_id}/'},
                {'name': 'batch_model', 'template': config['output_path'] + '/batch_model/{day}/{pass_id}/'}
            ]
        })
        if 'path_generator' in config:
            self._path_generator.add_path_template(config['path_generator'])
T
tangwei 已提交
99

X
xiexionghang 已提交
100 101 102 103 104 105 106
        self.regist_context_processor('uninit', self.init)
        self.regist_context_processor('startup', self.startup)
        self.regist_context_processor('begin_day', self.begin_day)
        self.regist_context_processor('train_pass', self.train_pass)
        self.regist_context_processor('end_day', self.end_day)

    def init(self, context):
X
xiexionghang 已提交
107 108
        """R
        """
109 110 111
        role_maker = None
        if self.global_config.get('process_mode', 'mpi') == 'brilliant_cpu':
            afs_config = self.global_config['io']['afs']
T
tangwei 已提交
112
            role_maker = GeneralRoleMaker(
113 114 115 116
                hdfs_name=afs_config['fs_name'], hdfs_ugi=afs_config['fs_ugi'],
                path=self.global_config['output_path'] + "/gloo",
                init_timeout_seconds=1200, run_timeout_seconds=1200)
        fleet.init(role_maker)
X
xiexionghang 已提交
117 118 119 120 121 122 123 124 125 126
        data_var_list = []
        data_var_name_dict = {}
        runnnable_scope = []
        runnnable_cost_op = []
        context['status'] = 'startup'

        for executor in self.global_config['executor']:
            scope = fluid.Scope()
            self._exector_context[executor['name']] = {}
            self._exector_context[executor['name']]['scope'] = scope
T
tangwei 已提交
127
            self._exector_context[executor['name']]['model'] = model_basic.create(executor)
T
tangwei 已提交
128
            model = self._exector_context[executor['name']]['model']
X
xiexionghang 已提交
129 130 131 132 133 134 135
            self._metrics.update(model.get_metrics())
            runnnable_scope.append(scope)
            runnnable_cost_op.append(model.get_cost_op())
            for var in model._data_var:
                if var.name in data_var_name_dict:
                    continue
                data_var_list.append(var)
T
tangwei 已提交
136
                data_var_name_dict[var.name] = var
X
xiexionghang 已提交
137

T
tangwei 已提交
138
        optimizer = model_basic.YamlModel.build_optimizer({
T
tangwei 已提交
139
            'metrics': self._metrics,
X
xiexionghang 已提交
140
            'optimizer_conf': self.global_config['optimizer']
X
xiexionghang 已提交
141 142 143 144
        })
        optimizer.minimize(runnnable_cost_op, runnnable_scope)
        for executor in self.global_config['executor']:
            scope = self._exector_context[executor['name']]['scope']
T
tangwei 已提交
145
            model = self._exector_context[executor['name']]['model']
X
xiexionghang 已提交
146 147 148 149
            program = model._build_param['model']['train_program']
            if not executor['is_update_sparse']:
                program._fleet_opt["program_configs"][str(id(model.get_cost_op().block.program))]["push_sparse"] = []
            if 'train_thread_num' not in executor:
X
xiexionghang 已提交
150
                executor['train_thread_num'] = self.global_config['train_thread_num']
X
xiexionghang 已提交
151 152 153 154
            with fluid.scope_guard(scope):
                self._exe.run(model._build_param['model']['startup_program'])
            model.dump_model_program('./')

T
tangwei 已提交
155
        # server init done
X
xiexionghang 已提交
156 157
        if fleet.is_server():
            return 0
T
tangwei 已提交
158

X
xiexionghang 已提交
159 160 161 162 163
        self._dataset = {}
        for dataset_item in self.global_config['dataset']['data_list']:
            dataset_item['data_vars'] = data_var_list
            dataset_item.update(self.global_config['io']['afs'])
            dataset_item["batch_size"] = self.global_config['batch_size']
T
tangwei 已提交
164
            self._dataset[dataset_item['name']] = dataset.FluidTimeSplitDataset(dataset_item)
T
tangwei 已提交
165
        # if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= last_day and config.reqi_dnn_plugin_pass >= last_pass:
X
xiexionghang 已提交
166 167 168 169 170
        #    util.reqi_changeslot(config.hdfs_dnn_plugin_path, join_save_params, common_save_params, update_save_params, scope2, scope3)
        fleet.init_worker()
        pass

    def print_log(self, log_str, params):
X
xiexionghang 已提交
171 172
        """R
        """
X
xiexionghang 已提交
173
        params['index'] = fleet.worker_index()
T
tangwei 已提交
174 175 176 177 178 179 180 181
        if params['master']:
            if fleet.worker_index() == 0:
                print(log_str)
                sys.stdout.flush()
        else:
            print(log_str)
        if 'stdout' in params:
            params['stdout'] += str(datetime.datetime.now()) + log_str
X
xiexionghang 已提交
182 183

    def print_global_metrics(self, scope, model, monitor_data, stdout_str):
X
xiexionghang 已提交
184 185
        """R
        """
X
xiexionghang 已提交
186
        metrics = model.get_metrics()
T
tangwei 已提交
187
        metric_calculator = AUCMetric(None)
X
xiexionghang 已提交
188
        for metric in metrics:
T
tangwei 已提交
189
            metric_param = {'label': metric, 'metric_dict': metrics[metric]}
X
xiexionghang 已提交
190
            metric_calculator.calculate(scope, metric_param)
T
tangwei 已提交
191
            metric_result = metric_calculator.get_result_to_string()
X
xiexionghang 已提交
192
            self.print_log(metric_result, {'master': True, 'stdout': stdout_str})
X
xiexionghang 已提交
193 194
            monitor_data += metric_result
            metric_calculator.clear(scope, metric_param)
T
tangwei 已提交
195

X
xiexionghang 已提交
196
    def save_model(self, day, pass_index, base_key):
X
xiexionghang 已提交
197 198
        """R
        """
T
tangwei 已提交
199
        cost_printer = util.CostPrinter(util.print_cost,
T
tangwei 已提交
200
                                        {'master': True, 'log_format': 'save model cost %s sec'})
X
xiexionghang 已提交
201
        model_path = self._path_generator.generate_path('batch_model', {'day': day, 'pass_id': pass_index})
T
tangwei 已提交
202 203 204
        save_mode = 0  # just save all
        if pass_index < 1:  # batch_model
            save_mode = 3  # unseen_day++, save all
T
tangwei 已提交
205
        util.rank0_print("going to save_model %s" % model_path)
X
xiexionghang 已提交
206
        fleet.save_persistables(None, model_path, mode=save_mode)
207 208
        if fleet._role_maker.is_first_worker():
            self._train_pass.save_train_progress(day, pass_index, base_key, model_path, is_checkpoint=True)
X
xiexionghang 已提交
209 210
        cost_printer.done()
        return model_path
T
tangwei 已提交
211

X
xiexionghang 已提交
212
    def save_xbox_model(self, day, pass_index, xbox_base_key, monitor_data):
X
xiexionghang 已提交
213 214
        """R
        """
X
xiexionghang 已提交
215 216
        stdout_str = ""
        xbox_patch_id = str(int(time.time()))
T
tangwei 已提交
217
        util.rank0_print("begin save delta model")
T
tangwei 已提交
218

X
xiexionghang 已提交
219 220
        model_path = ""
        xbox_model_donefile = ""
T
tangwei 已提交
221
        cost_printer = util.CostPrinter(util.print_cost, {'master': True, \
T
tangwei 已提交
222 223
                                                          'log_format': 'save xbox model cost %s sec',
                                                          'stdout': stdout_str})
X
xiexionghang 已提交
224 225 226
        if pass_index < 1:
            save_mode = 2
            xbox_patch_id = xbox_base_key
X
xiexionghang 已提交
227 228
            model_path = self._path_generator.generate_path('xbox_base', {'day': day})
            xbox_model_donefile = self._path_generator.generate_path('xbox_base_done', {'day': day})
X
xiexionghang 已提交
229 230
        else:
            save_mode = 1
X
xiexionghang 已提交
231 232
            model_path = self._path_generator.generate_path('xbox_delta', {'day': day, 'pass_id': pass_index})
            xbox_model_donefile = self._path_generator.generate_path('xbox_delta_done', {'day': day})
X
xiexionghang 已提交
233 234 235
        total_save_num = fleet.save_persistables(None, model_path, mode=save_mode)
        cost_printer.done()

T
tangwei 已提交
236
        cost_printer = util.CostPrinter(util.print_cost, {'master': True,
T
tangwei 已提交
237 238
                                                          'log_format': 'save cache model cost %s sec',
                                                          'stdout': stdout_str})
T
tangwei 已提交
239
        model_file_handler = fs.FileHandler(self.global_config['io']['afs'])
X
xiexionghang 已提交
240 241 242
        if self.global_config['save_cache_model']:
            cache_save_num = fleet.save_cache_model(None, model_path, mode=save_mode)
            model_file_handler.write(
T
tangwei 已提交
243 244
                "file_prefix:part\npart_num:16\nkey_num:%d\n" % cache_save_num,
                model_path + '/000_cache/sparse_cache.meta', 'w')
X
xiexionghang 已提交
245
        cost_printer.done()
T
tangwei 已提交
246
        util.rank0_print("save xbox cache model done, key_num=%s" % cache_save_num)
X
xiexionghang 已提交
247 248 249 250 251

        save_env_param = {
            'executor': self._exe,
            'save_combine': True
        }
T
tangwei 已提交
252
        cost_printer = util.CostPrinter(util.print_cost, {'master': True,
T
tangwei 已提交
253 254
                                                          'log_format': 'save dense model cost %s sec',
                                                          'stdout': stdout_str})
255 256 257 258 259 260 261
        if fleet._role_maker.is_first_worker():
            for executor in self.global_config['executor']:
                if 'layer_for_inference' not in executor:
                    continue
                executor_name = executor['name']
                model = self._exector_context[executor_name]['model']
                save_env_param['inference_list'] = executor['layer_for_inference']
T
tangwei 已提交
262
                save_env_param['scope'] = self._exector_context[executor_name]['scope']
263 264
                model.dump_inference_param(save_env_param)
                for dnn_layer in executor['layer_for_inference']:
T
tangwei 已提交
265 266
                    model_file_handler.cp(dnn_layer['save_file_name'],
                                          model_path + '/dnn_plugin/' + dnn_layer['save_file_name'])
267
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
268 269 270
        cost_printer.done()

        xbox_done_info = {
X
xiexionghang 已提交
271 272 273 274 275 276 277 278 279
            "id": xbox_patch_id,
            "key": xbox_base_key,
            "ins_path": "",
            "ins_tag": "feasign",
            "partition_type": "2",
            "record_count": "111111",
            "monitor_data": monitor_data,
            "mpi_size": str(fleet.worker_num()),
            "input": model_path.rstrip("/") + "/000",
T
tangwei 已提交
280 281
            "job_id": util.get_env_value("JOB_ID"),
            "job_name": util.get_env_value("JOB_NAME")
X
xiexionghang 已提交
282
        }
283 284 285 286 287
        if fleet._role_maker.is_first_worker():
            model_file_handler.write(json.dumps(xbox_done_info) + "\n", xbox_model_donefile, 'a')
            if pass_index > 0:
                self._train_pass.save_train_progress(day, pass_index, xbox_base_key, model_path, is_checkpoint=False)
        fleet._role_maker._barrier_worker()
T
tangwei 已提交
288 289
        return stdout_str

X
xiexionghang 已提交
290
    def run_executor(self, executor_config, dataset, stdout_str):
X
xiexionghang 已提交
291 292
        """R
        """
X
xiexionghang 已提交
293 294 295 296 297 298 299
        day = self._train_pass.date()
        pass_id = self._train_pass._pass_id
        xbox_base_key = self._train_pass._base_key
        executor_name = executor_config['name']
        scope = self._exector_context[executor_name]['scope']
        model = self._exector_context[executor_name]['model']
        with fluid.scope_guard(scope):
T
tangwei 已提交
300
            util.rank0_print("Begin " + executor_name + " pass")
X
xiexionghang 已提交
301 302 303
            begin = time.time()
            program = model._build_param['model']['train_program']
            self._exe.train_from_dataset(program, dataset, scope,
T
tangwei 已提交
304
                                         thread=executor_config['train_thread_num'], debug=self.global_config['debug'])
X
xiexionghang 已提交
305
            end = time.time()
X
xiexionghang 已提交
306
            local_cost = (end - begin) / 60.0
T
tangwei 已提交
307 308 309
            avg_cost = worker_numric_avg(local_cost)
            min_cost = worker_numric_min(local_cost)
            max_cost = worker_numric_max(local_cost)
T
tangwei 已提交
310
            util.rank0_print("avg train time %s mins, min %s mins, max %s mins" % (avg_cost, min_cost, max_cost))
X
xiexionghang 已提交
311 312 313 314
            self._exector_context[executor_name]['cost'] = max_cost

            monitor_data = ""
            self.print_global_metrics(scope, model, monitor_data, stdout_str)
T
tangwei 已提交
315
            util.rank0_print("End " + executor_name + " pass")
X
xiexionghang 已提交
316 317
            if self._train_pass.need_dump_inference(pass_id) and executor_config['dump_inference_model']:
                stdout_str += self.save_xbox_model(day, pass_id, xbox_base_key, monitor_data)
318
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
319 320

    def startup(self, context):
X
xiexionghang 已提交
321 322
        """R
        """
X
xiexionghang 已提交
323 324 325 326 327
        if fleet.is_server():
            fleet.run_server()
            context['status'] = 'wait'
            return
        stdout_str = ""
T
tangwei 已提交
328
        self._train_pass = util.TimeTrainPass(self.global_config)
X
xiexionghang 已提交
329
        if not self.global_config['cold_start']:
T
tangwei 已提交
330
            cost_printer = util.CostPrinter(util.print_cost,
T
tangwei 已提交
331 332
                                            {'master': True, 'log_format': 'load model cost %s sec',
                                             'stdout': stdout_str})
X
xiexionghang 已提交
333
            self.print_log("going to load model %s" % self._train_pass._checkpoint_model_path, {'master': True})
T
tangwei 已提交
334
            # if config.need_reqi_changeslot and config.reqi_dnn_plugin_day >= self._train_pass.date()
X
xiexionghang 已提交
335 336
            #    and config.reqi_dnn_plugin_pass >= self._pass_id:
            #    fleet.load_one_table(0, self._train_pass._checkpoint_model_path)
T
tangwei 已提交
337
            # else:
X
xiexionghang 已提交
338 339 340 341
            fleet.init_server(self._train_pass._checkpoint_model_path, mode=0)
            cost_printer.done()
        if self.global_config['save_first_base']:
            self.print_log("save_first_base=True", {'master': True})
X
xiexionghang 已提交
342
            self.print_log("going to save xbox base model", {'master': True, 'stdout': stdout_str})
X
xiexionghang 已提交
343
            self._train_pass._base_key = int(time.time())
X
xiexionghang 已提交
344
            stdout_str += self.save_xbox_model(self._train_pass.date(), 0, self._train_pass._base_key, "")
X
xiexionghang 已提交
345
        context['status'] = 'begin_day'
T
tangwei 已提交
346

X
xiexionghang 已提交
347
    def begin_day(self, context):
X
xiexionghang 已提交
348 349
        """R
        """
X
xiexionghang 已提交
350 351 352 353 354
        stdout_str = ""
        if not self._train_pass.next():
            context['is_exit'] = True
        day = self._train_pass.date()
        pass_id = self._train_pass._pass_id
X
xiexionghang 已提交
355
        self.print_log("======== BEGIN DAY:%s ========" % day, {'master': True, 'stdout': stdout_str})
X
xiexionghang 已提交
356 357 358 359
        if pass_id == self._train_pass.max_pass_num_day():
            context['status'] = 'end_day'
        else:
            context['status'] = 'train_pass'
T
tangwei 已提交
360

X
xiexionghang 已提交
361
    def end_day(self, context):
X
xiexionghang 已提交
362 363
        """R
        """
X
xiexionghang 已提交
364 365 366 367 368
        day = self._train_pass.date()
        pass_id = self._train_pass._pass_id
        xbox_base_key = int(time.time())
        context['status'] = 'begin_day'

T
tangwei 已提交
369 370
        util.rank0_print("shrink table")
        cost_printer = util.CostPrinter(util.print_cost,
T
tangwei 已提交
371
                                        {'master': True, 'log_format': 'shrink table done, cost %s sec'})
X
xiexionghang 已提交
372 373 374 375 376 377 378 379 380
        fleet.shrink_sparse_table()
        for executor in self._exector_context:
            self._exector_context[executor]['model'].shrink({
                'scope': self._exector_context[executor]['scope'],
                'decay': self.global_config['optimizer']['dense_decay_rate']
            })
        cost_printer.done()

        next_date = self._train_pass.date(delta_day=1)
T
tangwei 已提交
381
        util.rank0_print("going to save xbox base model")
X
xiexionghang 已提交
382
        self.save_xbox_model(next_date, 0, xbox_base_key, "")
T
tangwei 已提交
383
        util.rank0_print("going to save batch model")
X
xiexionghang 已提交
384 385
        self.save_model(next_date, 0, xbox_base_key)
        self._train_pass._base_key = xbox_base_key
386
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
387 388

    def train_pass(self, context):
X
xiexionghang 已提交
389 390
        """R
        """
X
xiexionghang 已提交
391 392 393 394 395
        stdout_str = ""
        day = self._train_pass.date()
        pass_id = self._train_pass._pass_id
        base_key = self._train_pass._base_key
        pass_time = self._train_pass._current_train_time.strftime("%Y%m%d%H%M")
X
xiexionghang 已提交
396
        self.print_log("    ==== begin delta:%s ========" % pass_id, {'master': True, 'stdout': stdout_str})
X
xiexionghang 已提交
397 398
        train_begin_time = time.time()

T
tangwei 已提交
399
        cost_printer = util.CostPrinter(util.print_cost, \
T
tangwei 已提交
400 401
                                        {'master': True, 'log_format': 'load into memory done, cost %s sec',
                                         'stdout': stdout_str})
X
xiexionghang 已提交
402 403 404 405
        current_dataset = {}
        for name in self._dataset:
            current_dataset[name] = self._dataset[name].load_dataset({
                'node_num': fleet.worker_num(), 'node_idx': fleet.worker_index(),
X
xiexionghang 已提交
406
                'begin_time': pass_time, 'time_window_min': self._train_pass._interval_per_pass
X
xiexionghang 已提交
407
            })
408
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
409
        cost_printer.done()
T
tangwei 已提交
410

T
tangwei 已提交
411 412
        util.rank0_print("going to global shuffle")
        cost_printer = util.CostPrinter(util.print_cost, {
X
xiexionghang 已提交
413
            'master': True, 'stdout': stdout_str,
T
tangwei 已提交
414
            'log_format': 'global shuffle done, cost %s sec'})
X
xiexionghang 已提交
415 416 417 418
        for name in current_dataset:
            current_dataset[name].global_shuffle(fleet, self.global_config['dataset']['shuffle_thread'])
        cost_printer.done()
        # str(dataset.get_shuffle_data_size(fleet))
419
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
420 421

        if self.global_config['prefetch_data']:
T
tangwei 已提交
422 423
            next_pass_time = (self._train_pass._current_train_time +
                              datetime.timedelta(minutes=self._train_pass._interval_per_pass)).strftime("%Y%m%d%H%M")
X
xiexionghang 已提交
424 425 426
            for name in self._dataset:
                self._dataset[name].preload_dataset({
                    'node_num': fleet.worker_num(), 'node_idx': fleet.worker_index(),
X
xiexionghang 已提交
427
                    'begin_time': next_pass_time, 'time_window_min': self._train_pass._interval_per_pass
X
xiexionghang 已提交
428
                })
T
tangwei 已提交
429

430
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
431 432 433
        pure_train_begin = time.time()
        for executor in self.global_config['executor']:
            self.run_executor(executor, current_dataset[executor['dataset_name']], stdout_str)
T
tangwei 已提交
434
        cost_printer = util.CostPrinter(util.print_cost, \
T
tangwei 已提交
435
                                        {'master': True, 'log_format': 'release_memory cost %s sec'})
X
xiexionghang 已提交
436 437 438
        for name in current_dataset:
            current_dataset[name].release_memory()
        pure_train_cost = time.time() - pure_train_begin
T
tangwei 已提交
439

X
xiexionghang 已提交
440 441 442 443 444
        if self._train_pass.is_checkpoint_pass(pass_id):
            self.save_model(day, pass_id, base_key)

        train_end_time = time.time()
        train_cost = train_end_time - train_begin_time
T
tangwei 已提交
445
        other_cost = train_cost - pure_train_cost
X
xiexionghang 已提交
446 447 448
        log_str = "finished train day %s pass %s time cost:%s sec job time cost:" % (day, pass_id, train_cost)
        for executor in self._exector_context:
            log_str += '[' + executor + ':' + str(self._exector_context[executor]['cost']) + ']'
T
tangwei 已提交
449
        log_str += '[other_cost:' + str(other_cost) + ']'
T
tangwei 已提交
450 451
        util.rank0_print(log_str)
        stdout_str += util.now_time_str() + log_str
X
xiexionghang 已提交
452
        sys.stdout.write(stdout_str)
453
        fleet._role_maker._barrier_worker()
X
xiexionghang 已提交
454 455 456 457 458 459
        stdout_str = ""
        if pass_id == self._train_pass.max_pass_num_day():
            context['status'] = 'end_day'
            return
        elif not self._train_pass.next():
            context['is_exit'] = True