cluster.py 11.0 KB
Newer Older
T
tangwei 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
T
tangwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import unicode_literals
T
tangwei 已提交
17

T
tangwei 已提交
18
import copy
T
tangwei 已提交
19 20
import os
import subprocess
C
Chengmo 已提交
21
import warnings
T
tangwei 已提交
22

23 24 25
from paddlerec.core.engine.engine import Engine
from paddlerec.core.factory import TrainerFactory
from paddlerec.core.utils import envs
T
tangwei 已提交
26 27


T
tangwei 已提交
28
class ClusterEngine(Engine):
T
tangwei 已提交
29
    def __init_impl__(self):
C
Chengmo 已提交
30 31 32 33
        self.role = envs.get_runtime_environ("engine_role")
        if self.role == "WORKER":
            return

T
tangwei 已提交
34
        abs_dir = os.path.dirname(os.path.abspath(__file__))
C
Chengmo 已提交
35
        os.environ["abs_dir"] = str(abs_dir)
T
tangwei 已提交
36

C
Chengmo 已提交
37 38 39 40 41
        self.backend = envs.get_runtime_environ("backend")
        if not self.backend:
            self.backend = ""
        self.backend = self.backend.upper()
        if self.backend == "PADDLECLOUD":
T
tangwei 已提交
42
            self.submit_script = os.path.join(abs_dir, "cloud/cluster.sh")
C
Chengmo 已提交
43
        elif self.backend == "KUBERNETES":
J
Jinhua Liang 已提交
44
            self.submit_script = os.path.join(abs_dir, "k8s/cluster.sh")
T
tangwei 已提交
45
        else:
C
Chengmo 已提交
46 47
            raise ValueError("{} can not be supported now".format(
                self.backend))
T
tangwei 已提交
48

T
tangwei 已提交
49
    def start_worker_procs(self):
T
tangwei 已提交
50 51
        trainer = TrainerFactory.create(self.trainer)
        trainer.run()
T
tangwei 已提交
52 53

    def start_master_procs(self):
C
Chengmo 已提交
54 55 56 57 58
        if self.backend == "PADDLECLOUD":
            self.paddlecloud_env_check()
        elif self.backend == "KUBERNETES":
            self.kubernetes_env_check()

T
tangwei 已提交
59 60 61 62
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
T
tangwei 已提交
63 64 65 66 67

        cmd = ("bash {}".format(self.submit_script)).split(" ")
        proc = subprocess.Popen(cmd, env=current_env, cwd=os.getcwd())
        proc.wait()

J
Jinhua Liang 已提交
68 69
    @staticmethod
    def workspace_replace():
C
Chengmo 已提交
70
        workspace = envs.get_runtime_environ("workspace")
J
Jinhua Liang 已提交
71 72 73 74 75

        for k, v in os.environ.items():
            v = v.replace("{workspace}", workspace)
            os.environ[k] = str(v)

T
tangwei 已提交
76
    def run(self):
C
Chengmo 已提交
77
        if self.role == "MASTER":
T
tangwei 已提交
78 79
            self.start_master_procs()

C
Chengmo 已提交
80
        elif self.role == "WORKER":
T
tangwei 已提交
81 82 83
            self.start_worker_procs()

        else:
T
tangwei 已提交
84
            raise ValueError("role {} error, must in MASTER/WORKER".format(
C
Chengmo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                self.role))

    def paddlecloud_env_check(self):
        # get fleet mode
        fleet_mode = envs.get_runtime_environ("fleet_mode")
        # get device
        device = envs.get_runtime_environ("device")
        # get cluster type
        cluster_type = envs.get_runtime_environ("cluster_type")

        cluster_env_check_tool = None
        if cluster_type.upper() == "MPI":
            if device == "CPU" and fleet_mode == "PS":
                cluster_env_check_tool = PaddleCloudMpiEnv()
            else:
                raise ValueError(
                    "Paddlecloud with Mpi don't support GPU training, check your config"
                )
        elif cluster_type.upper() == "K8S":
            if fleet_mode == "PS":
                if device == "CPU":
                    raise ValueError(
                        "PS-CPU on paddlecloud is not supported at this time, comming soon"
                    )
                elif device == "GPU":
                    raise ValueError(
                        "PS-GPU on paddlecloud is not supported at this time, comming soon"
                    )
            if fleet_mode == "COLLECTIVE":
                if device == "GPU":
                    cluster_env_check_tool = CloudCollectiveEnv()
                elif device == "CPU":
                    raise ValueError(
                        "Unexpected config -> device: CPU with fleet_mode: Collective, check your config"
                    )
        else:
            raise ValueError("cluster_type {} error, must in MPI/K8S".format(
                cluster_type))

        cluster_env_check_tool.env_check()
        cluster_env_check_tool.env_set()

    def kubernetes_env_check(self):
        pass


class ClusterEnvBase(object):
    def __init__(self):
        # get backend env
        backend_yaml = envs.get_runtime_environ("backend_yaml")
        _env = envs.load_yaml(backend_yaml)
        self.backend_env = envs.flatten_environs(_env, ".")
        self.cluster_env = {}

    def env_check(self):
        # check common env
        # fs_name & fs_ugi
        self.cluster_env["FS_NAME"] = self.backend_env.get("config.fs_name",
                                                           "")
        self.cluster_env["FS_UGI"] = self.backend_env.get("config.fs_ugi", "")
        if self.cluster_env["FS_NAME"] == "" or self.cluster_env[
                "FS_UGI"] == "":
            raise ValueError(
                "No -- FS_UGI or FS_NAME -- found in your backend.yaml, please check."
            )

        # output_path
        self.cluster_env["OUTPUT_PATH"] = self.backend_env.get(
            "config.output_path", "")
        if self.cluster_env["OUTPUT_PATH"] == "":
            warnings.warn(
                "Job output_path not set! Please check your backend yaml.",
                category=UserWarning,
                stacklevel=2)

        # paddle_version
        self.cluster_env["PADDLE_VERSION"] = self.backend_env.get(
            "config.paddle_version", "1.7.2")

        # communicator
        self.cluster_env[
            "FLAGS_communicator_is_sgd_optimizer"] = self.backend_env.get(
                "config.communicator.FLAGS_communicator_is_sgd_optimizer", 0)
        self.cluster_env[
            "FLAGS_communicator_send_queue_size"] = self.backend_env.get(
                "config.communicator.FLAGS_communicator_send_queue_size", 5)
        self.cluster_env[
            "FLAGS_communicator_thread_pool_size"] = self.backend_env.get(
                "config.communicator.FLAGS_communicator_thread_pool_size", 32)
        self.cluster_env[
            "FLAGS_communicator_max_merge_var_num"] = self.backend_env.get(
                "config.communicator.FLAGS_communicator_max_merge_var_num", 5)
        self.cluster_env[
            "FLAGS_communicator_max_send_grad_num_before_recv"] = self.backend_env.get(
                "config.communicator.FLAGS_communicator_max_send_grad_num_before_recv",
                5)
        self.cluster_env["FLAGS_communicator_fake_rpc"] = self.backend_env.get(
            "config.communicator.FLAGS_communicator_fake_rpc", 0)
        self.cluster_env["FLAGS_rpc_retry_times"] = self.backend_env.get(
            "config.communicator.FLAGS_rpc_retry_times", 3)

        # ak & sk
        self.cluster_env["AK"] = self.backend_env.get("submit.ak", "")
        self.cluster_env["SK"] = self.backend_env.get("submit.sk", "")
        if self.cluster_env["AK"] == "" or self.cluster_env["SK"] == "":
            raise ValueError(
                "No -- AK or SK -- found in your backend.yaml, please check.")

        # priority
        self.cluster_env["PRIORITY"] = self.backend_env.get("submit.priority",
                                                            "high")

        # job name
        self.cluster_env["JOB_NAME"] = self.backend_env.get(
            "submit.job_name", "PaddleRecClusterJob")

        # group
        self.cluster_env["GROUP_NAME"] = self.backend_env.get("submit.group",
                                                              "paddle")

        # start_cmd
        self.cluster_env["START_CMD"] = self.backend_env.get(
            "submit.start_cmd", "python -m paddlerec.run -m config.yaml")

        # files
        self.cluster_env["FILES"] = self.backend_env.get("submit.files", "")
        if self.cluster_env["FILES"] == "":
            raise ValueError(
                "No -- files -- found in your backend.yaml, please check.")

    def env_set(self):
        envs.set_runtime_environs(self.cluster_env)
        flattens = envs.flatten_environs(self.cluster_env)
        print(envs.pretty_print_envs(flattens, ("Cluster Envs", "Value")))


class PaddleCloudMpiEnv(ClusterEnvBase):
    def __init__(self):
        super(PaddleCloudMpiEnv, self).__init__()

    def env_check(self):
        super(PaddleCloudMpiEnv, self).env_check()

        # check mpi env

        self.cluster_env["DISTRIBUTE_MODE"] = "PS_CPU_MPI"

        # train_data_path
        self.cluster_env["TRAIN_DATA_PATH"] = self.backend_env.get(
            "config.train_data_path", "")
        if self.cluster_env["TRAIN_DATA_PATH"] == "":
            raise ValueError(
                "No -- TRAIN_DATA_PATH -- found in your backend.yaml, please check."
            )
        # test_data_path
        self.cluster_env["TEST_DATA_PATH"] = self.backend_env.get(
            "config.test_data_path", "")
        if self.cluster_env["TEST_DATA_PATH"] == "":
            warnings.warn(
                "Job test_data_path not set! Please check your backend yaml.",
                category=UserWarning,
                stacklevel=2)

        # thirdparty_path
        self.cluster_env["THIRDPARTY_PATH"] = self.backend_env.get(
            "config.thirdparty_path", "")
        if self.cluster_env["THIRDPARTY_PATH"] == "":
            warnings.warn(
                "Job thirdparty_path not set! Please check your backend yaml.",
                category=UserWarning,
                stacklevel=2)

        # nodes
        self.cluster_env["MPI_NODES"] = self.backend_env.get("submit.nodes", 1)


class PaddleCloudK8sEnv(ClusterEnvBase):
    def __init__(self):
        super(PaddleCloudK8sEnv, self).__init__()

    def env_check(self):
        super(PaddleCloudK8sEnv, self).env_check()

        # check afs_remote_mount_point
        self.cluster_env["AFS_REMOTE_MOUNT_POINT"] = self.backend_env.get(
            "config.afs_remote_mount_point", "")
        if self.cluster_env["AFS_REMOTE_MOUNT_POINT"] == "":
            warnings.warn(
                "Job afs_remote_mount_point not set! Please check your backend yaml.",
                category=UserWarning,
                stacklevel=2)
        warnings.warn(
            "The remote mount point will be mounted to the ./afs/",
            category=UserWarning,
            stacklevel=2)


class CloudCollectiveEnv(PaddleCloudK8sEnv):
    def __init__(self):
        super(CloudCollectiveEnv, self).__init__()

    def env_check(self):
        super(CloudCollectiveEnv, self).env_check()

        self.cluster_env["DISTRIBUTE_MODE"] = "COLLECTIVE_GPU_K8S"
        self.cluster_env["K8S_TRAINERS"] = self.backend_env.get(
            "submit.k8s_trainers", 1)
        self.cluster_env["K8S_GPU_CARD"] = self.backend_env.get(
            "submit.k8s_gpu_card", 1)
        self.cluster_env["K8S_CPU_CORES"] = self.backend_env.get(
            "submit.k8s_cpu_cores", 1)