finetune_startup.py 6.0 KB
Newer Older
Y
yinhaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import warnings
import os
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddlerec.core.utils import envs
from paddlerec.core.trainers.framework.startup import StartupBase
from paddlerec.core.trainer import EngineMode

__all__ = ["Startup"]


class Startup(StartupBase):
    """R
    """

    def __init__(self, context):
        self.op_name_scope = "op_namescope"
        self.clip_op_name_scope = "@CLIP"
        self.op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName(
        )
        print("Running FineTuningStartup.")

    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _get_params_grads(self, program):
        """
        Get optimizer operators, parameters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): parameter->gradient.
        """
        block = program.global_block()
        params_grads = []
        # tmp set to dedup
        optimize_params = set()
        origin_var_dict = program.global_block().vars
        for op in block.ops:
            if self._is_opt_role_op(op):
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode
                if self.op_name_scope in op.all_attrs(
                ) and self.clip_op_name_scope in op.attr(self.op_name_scope):
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue

                if op.attr(self.op_role_var_attr_name):
                    param_name = op.attr(self.op_role_var_attr_name)[0]
                    grad_name = op.attr(self.op_role_var_attr_name)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[grad_name]
                        ])
        return params_grads

    @staticmethod
    def is_persistable(var):
        """
        Check whether the given variable is persistable.

        Args:
            var(Variable): The variable to be checked.

        Returns:
            bool: True if the given `var` is persistable
            False if not.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                param = fluid.default_main_program().global_block().var('fc.b')
                res = fluid.io.is_persistable(param)
        """
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
            return False
        return var.persistable

    def load(self, context, is_fleet=False, main_program=None):
        dirname = envs.get_global_env("runner." + context["runner_name"] +
                                      ".init_pretraining_model_path", "")
        hotstart_dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", "")

        def existed_params(var):
            if not isinstance(var, fluid.framework.Parameter):
                return False
            if os.path.exists(os.path.join(dirname, var.name)):
                print("INIT %s" % var.name)
                return True
            else:
                #print("SKIP %s" % var.name)
                return False

        if hotstart_dirname != "":
            #If init_model_path exists, hot start is first choice
            print("going to load ", hotstart_dirname)
            fluid.io.load_persistables(
                context["exe"], hotstart_dirname, main_program=main_program)
            print("load from {} success".format(hotstart_dirname))
        elif dirname != "":
            #If init_pretraining_model_path exists ,pretrained model load parameters
            print("going to load ", dirname)
            fluid.io.load_vars(
                context["exe"],
                dirname,
                main_program=main_program,
                predicate=existed_params)
            print("load from {} success".format(dirname))
        else:
            #If both of the above are empty, cold start model
            return

    def startup(self, context):
        for model_dict in context["phases"]:
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    context["exe"].run(startup_prog)
                    self.load(context, main_program=train_prog)
        context["status"] = "train_pass"