dataloader_instance.py 4.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import sys

19 20 21
from paddlerec.core.utils.envs import lazy_instance_by_fliename
from paddlerec.core.utils.envs import get_global_env
from paddlerec.core.utils.envs import get_runtime_environ
X
xujiaqi01 已提交
22
from paddlerec.core.reader import SlotReader
T
tangwei 已提交
23 24 25 26 27


def dataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "TrainReader"
M
malin10 已提交
28
        namespace = "train.reader"
T
tangwei 已提交
29 30 31
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "EvaluateReader"
M
malin10 已提交
32
        namespace = "evaluate.reader"
T
tangwei 已提交
33 34
        data_path = get_global_env("test_data_path", None, namespace)

35
    if data_path.startswith("paddlerec::"):
T
tangwei 已提交
36 37 38 39
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

T
tangwei 已提交
40 41
    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

T
tangwei 已提交
42
    reader_class = lazy_instance_by_fliename(readerclass, reader_name)
T
tangwei 已提交
43 44 45 46 47 48 49
    reader = reader_class(yaml_file)
    reader.init()

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
T
tangwei 已提交
50
                    line = line.rstrip('\n')
T
tangwei 已提交
51 52 53 54 55 56 57 58 59
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values
T
tangwei 已提交
60

Y
add din  
yaoxuefeng 已提交
61 62 63 64 65
    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
T
tangwei 已提交
66
    return gen_reader
X
xujiaqi01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112


def slotdataloader(readerclass, train, yaml_file):
    if train == "TRAIN":
        reader_name = "SlotReader"
        namespace = "train.reader"
        data_path = get_global_env("train_data_path", None, namespace)
    else:
        reader_name = "SlotReader"
        namespace = "evaluate.reader"
        data_path = get_global_env("test_data_path", None, namespace)

    if data_path.startswith("paddlerec::"):
        package_base = get_runtime_environ("PACKAGE_BASE")
        assert package_base is not None
        data_path = os.path.join(package_base, data_path.split("::")[1])

    files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)]

    sparse = get_global_env("sparse_slots", None, namespace)
    dense = get_global_env("dense_slots", None, namespace)
    padding = get_global_env("padding", 0, namespace)
    reader = SlotReader(yaml_file)
    reader.init(sparse, dense, int(padding))

    def gen_reader():
        for file in files:
            with open(file, 'r') as f:
                for line in f:
                    line = line.rstrip('\n')
                    iter = reader.generate_sample(line)
                    for parsed_line in iter():
                        if parsed_line is None:
                            continue
                        else:
                            values = []
                            for pased in parsed_line:
                                values.append(pased[1])
                            yield values

    def gen_batch_reader():
        return reader.generate_batch_from_trainfiles(files)

    if hasattr(reader, 'generate_batch_from_trainfiles'):
        return gen_batch_reader()
    return gen_reader