model.py 4.4 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15 16
import math
import paddle.fluid as fluid
T
tangwei 已提交
17

T
tangwei 已提交
18
from ...utils import envs
T
tangwei 已提交
19 20


T
tangwei 已提交
21
class Train(object):
T
tangwei 已提交
22

T
tangwei 已提交
23 24 25 26
    def __init__(self):
        self.sparse_inputs = []
        self.dense_input = None
        self.label_input = None
T
tangwei 已提交
27

T
tangwei 已提交
28 29 30
        self.sparse_input_varnames = []
        self.dense_input_varname = None
        self.label_input_varname = None
T
tangwei 已提交
31 32

    def input(self):
T
tangwei 已提交
33 34
        def sparse_inputs():
            ids = envs.get_global_env("sparse_inputs_counts")
T
tangwei 已提交
35

T
tangwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
            sparse_input_ids = [
                fluid.layers.data(name="C" + str(i),
                                  shape=[1],
                                  lod_level=1,
                                  dtype="int64") for i in range(ids)
            ]
            return sparse_input_ids, [var.name for var in sparse_input_ids]

        def dense_input():
            dense_input_dim = envs.get_global_env("dense_input_dim")

            dense_input_var = fluid.layers.data(name="dense_input",
                                                shape=dense_input_dim,
                                                dtype="float32")
            return dense_input_var, dense_input_var.name

        def label_input():
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            return label, label.name

        self.sparse_inputs, self.sparse_input_varnames = sparse_inputs()
        self.dense_input, self.dense_input_varname = dense_input()
        self.label_input, self.label_input_varname = label_input()
T
tangwei 已提交
59 60

    def net(self):
T
tangwei 已提交
61 62 63
        def embedding_layer(input):
            sparse_feature_number = envs.get_global_env("sparse_feature_number")
            sparse_feature_dim = envs.get_global_env("sparse_feature_dim")
T
tangwei 已提交
64

T
tangwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            emb = fluid.layers.embedding(
                input=input,
                is_sparse=True,
                size=[{sparse_feature_number}, {sparse_feature_dim}],
                param_attr=fluid.ParamAttr(
                    name="SparseFeatFactors",
                    initializer=fluid.initializer.Uniform()),
            )
            emb_sum = fluid.layers.sequence_pool(
                input=emb, pool_type='sum')
            return emb_sum

        def fc(input, output_size):
            output = fluid.layers.fc(
                input=input, size=output_size,
                act='relu', param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Normal(
                        scale=1.0 / math.sqrt(input.shape[1]))))
            return output

        sparse_embed_seq = list(map(embedding_layer, self.sparse_inputs))
        concated = fluid.layers.concat(sparse_embed_seq + [self.dense_input], axis=1)

        fcs = [concated]
        hidden_layers = envs.get_global_env("fc_sizes")

        for size in hidden_layers:
            fcs.append(fc(fcs[-1], size))

        predict = fluid.layers.fc(
            input=fcs[-1],
            size=2,
            act="softmax",
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(fcs[-1].shape[1]))),
        )

        self.predict = predict

    def loss(self, predict):
        cost = fluid.layers.cross_entropy(input=predict, label=self.label_input)
        avg_cost = fluid.layers.reduce_sum(cost)
        self.loss = avg_cost

    def metric(self):
        auc, batch_auc, _ = fluid.layers.auc(input=self.predict,
                                             label=self.label_input,
                                             num_thresholds=2 ** 12,
                                             slide_steps=20)
T
tangwei 已提交
114 115

    def optimizer(self):
T
tangwei 已提交
116 117 118 119 120 121 122 123 124 125
        learning_rate = envs.get_global_env("learning_rate")
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer


class Evaluate(object):
    def input(self):
        pass

    def net(self):
T
tangwei 已提交
126
        pass