preprocess.py 7.5 KB
Newer Older
M
add gnn  
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
#!/usr/bin/env python36
# -*- coding: utf-8 -*-
"""
Created on July, 2018

@author: Tangrizzly
"""

import argparse
import time
import csv
import pickle
import operator
import datetime
import os

parser = argparse.ArgumentParser()
parser.add_argument(
    '--dataset',
    default='sample',
    help='dataset name: diginetica/yoochoose/sample')
opt = parser.parse_args()
print(opt)

dataset = 'sample_train-item-views.csv'
if opt.dataset == 'diginetica':
    dataset = 'train-item-views.csv'
elif opt.dataset == 'yoochoose':
    dataset = 'yoochoose-clicks.dat'

print("-- Starting @ %ss" % datetime.datetime.now())
with open(dataset, "r") as f:
    if opt.dataset == 'yoochoose':
        reader = csv.DictReader(f, delimiter=',')
    else:
        reader = csv.DictReader(f, delimiter=';')
    sess_clicks = {}
    sess_date = {}
    ctr = 0
    curid = -1
    curdate = None
    for data in reader:
        sessid = data['session_id']
        if curdate and not curid == sessid:
            date = ''
            if opt.dataset == 'yoochoose':
                date = time.mktime(
                    time.strptime(curdate[:19], '%Y-%m-%dT%H:%M:%S'))
            else:
                date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
            sess_date[curid] = date
        curid = sessid
        if opt.dataset == 'yoochoose':
            item = data['item_id']
        else:
            item = data['item_id'], int(data['timeframe'])
        curdate = ''
        if opt.dataset == 'yoochoose':
            curdate = data['timestamp']
        else:
            curdate = data['eventdate']

        if sessid in sess_clicks:
            sess_clicks[sessid] += [item]
        else:
            sess_clicks[sessid] = [item]
        ctr += 1
    date = ''
    if opt.dataset == 'yoochoose':
        date = time.mktime(time.strptime(curdate[:19], '%Y-%m-%dT%H:%M:%S'))
    else:
        date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
        for i in list(sess_clicks):
            sorted_clicks = sorted(sess_clicks[i], key=operator.itemgetter(1))
            sess_clicks[i] = [c[0] for c in sorted_clicks]
    sess_date[curid] = date
print("-- Reading data @ %ss" % datetime.datetime.now())

# Filter out length 1 sessions
for s in list(sess_clicks):
    if len(sess_clicks[s]) == 1:
        del sess_clicks[s]
        del sess_date[s]

# Count number of times each item appears
iid_counts = {}
for s in sess_clicks:
    seq = sess_clicks[s]
    for iid in seq:
        if iid in iid_counts:
            iid_counts[iid] += 1
        else:
            iid_counts[iid] = 1

sorted_counts = sorted(iid_counts.items(), key=operator.itemgetter(1))

length = len(sess_clicks)
for s in list(sess_clicks):
    curseq = sess_clicks[s]
    filseq = list(filter(lambda i: iid_counts[i] >= 5, curseq))
    if len(filseq) < 2:
        del sess_clicks[s]
        del sess_date[s]
    else:
        sess_clicks[s] = filseq

# Split out test set based on dates
dates = list(sess_date.items())
maxdate = dates[0][1]

for _, date in dates:
    if maxdate < date:
        maxdate = date

# 7 days for test
splitdate = 0
if opt.dataset == 'yoochoose':
    splitdate = maxdate - 86400 * 1  # the number of seconds for a day:86400
else:
    splitdate = maxdate - 86400 * 7

print('Splitting date', splitdate)  # Yoochoose: ('Split date', 1411930799.0)
tra_sess = filter(lambda x: x[1] < splitdate, dates)
tes_sess = filter(lambda x: x[1] > splitdate, dates)

# Sort sessions by date
tra_sess = sorted(
    tra_sess, key=operator.itemgetter(1))  # [(session_id, timestamp), (), ]
tes_sess = sorted(
    tes_sess, key=operator.itemgetter(1))  # [(session_id, timestamp), (), ]
print(len(tra_sess))  # 186670    # 7966257
print(len(tes_sess))  # 15979     # 15324
print(tra_sess[:3])
print(tes_sess[:3])
print("-- Splitting train set and test set @ %ss" % datetime.datetime.now())

# Choosing item count >=5 gives approximately the same number of items as reported in paper
item_dict = {}


# Convert training sessions to sequences and renumber items to start from 1
def obtian_tra():
    train_ids = []
    train_seqs = []
    train_dates = []
    item_ctr = 1
    for s, date in tra_sess:
        seq = sess_clicks[s]
        outseq = []
        for i in seq:
            if i in item_dict:
                outseq += [item_dict[i]]
            else:
                outseq += [item_ctr]
                item_dict[i] = item_ctr
                item_ctr += 1
        if len(outseq) < 2:  # Doesn't occur
            continue
        train_ids += [s]
        train_dates += [date]
        train_seqs += [outseq]
    print(item_ctr)  # 43098, 37484
    with open("./diginetica/config.txt", "w") as fout:
        fout.write(str(item_ctr) + "\n")
    return train_ids, train_dates, train_seqs


# Convert test sessions to sequences, ignoring items that do not appear in training set
def obtian_tes():
    test_ids = []
    test_seqs = []
    test_dates = []
    for s, date in tes_sess:
        seq = sess_clicks[s]
        outseq = []
        for i in seq:
            if i in item_dict:
                outseq += [item_dict[i]]
        if len(outseq) < 2:
            continue
        test_ids += [s]
        test_dates += [date]
        test_seqs += [outseq]
    return test_ids, test_dates, test_seqs


tra_ids, tra_dates, tra_seqs = obtian_tra()
tes_ids, tes_dates, tes_seqs = obtian_tes()


def process_seqs(iseqs, idates):
    out_seqs = []
    out_dates = []
    labs = []
    ids = []
    for id, seq, date in zip(range(len(iseqs)), iseqs, idates):
        for i in range(1, len(seq)):
            tar = seq[-i]
            labs += [tar]
            out_seqs += [seq[:-i]]
            out_dates += [date]
            ids += [id]
    return out_seqs, out_dates, labs, ids


tr_seqs, tr_dates, tr_labs, tr_ids = process_seqs(tra_seqs, tra_dates)
te_seqs, te_dates, te_labs, te_ids = process_seqs(tes_seqs, tes_dates)
tra = (tr_seqs, tr_labs)
tes = (te_seqs, te_labs)
print(len(tr_seqs))
print(len(te_seqs))
print(tr_seqs[:3], tr_dates[:3], tr_labs[:3])
print(te_seqs[:3], te_dates[:3], te_labs[:3])
all = 0

for seq in tra_seqs:
    all += len(seq)
for seq in tes_seqs:
    all += len(seq)
print('avg length: ', all / (len(tra_seqs) + len(tes_seqs) * 1.0))
if opt.dataset == 'diginetica':
    if not os.path.exists('diginetica'):
        os.makedirs('diginetica')
    pickle.dump(tra, open('diginetica/train', 'wb'))
    pickle.dump(tes, open('diginetica/test', 'wb'))
    pickle.dump(tra_seqs, open('diginetica/all_train_seq', 'wb'))
elif opt.dataset == 'yoochoose':
    if not os.path.exists('yoochoose1_4'):
        os.makedirs('yoochoose1_4')
    if not os.path.exists('yoochoose1_64'):
        os.makedirs('yoochoose1_64')
    pickle.dump(tes, open('yoochoose1_4/test', 'wb'))
    pickle.dump(tes, open('yoochoose1_64/test', 'wb'))

    split4, split64 = int(len(tr_seqs) / 4), int(len(tr_seqs) / 64)
    print(len(tr_seqs[-split4:]))
    print(len(tr_seqs[-split64:]))

    tra4, tra64 = (tr_seqs[-split4:], tr_labs[-split4:]), (tr_seqs[-split64:],
                                                           tr_labs[-split64:])
    seq4, seq64 = tra_seqs[tr_ids[-split4]:], tra_seqs[tr_ids[-split64]:]

    pickle.dump(tra4, open('yoochoose1_4/train', 'wb'))
    pickle.dump(seq4, open('yoochoose1_4/all_train_seq', 'wb'))

    pickle.dump(tra64, open('yoochoose1_64/train', 'wb'))
    pickle.dump(seq64, open('yoochoose1_64/all_train_seq', 'wb'))

else:
    if not os.path.exists('sample'):
        os.makedirs('sample')
    pickle.dump(tra, open('sample/train', 'wb'))
    pickle.dump(tes, open('sample/test', 'wb'))
    pickle.dump(tra_seqs, open('sample/all_train_seq', 'wb'))

print('Done.')