reader.py 4.1 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io

import numpy as np

C
Chengmo 已提交
19
from paddlerec.core.reader import ReaderBase
M
malin10 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from paddlerec.core.utils import envs


class NumpyRandomInt(object):
    def __init__(self, a, b, buf_size=1000):
        self.idx = 0
        self.buffer = np.random.random_integers(a, b, buf_size)
        self.a = a
        self.b = b

    def __call__(self):
        if self.idx == len(self.buffer):
            self.buffer = np.random.random_integers(self.a, self.b,
                                                    len(self.buffer))
            self.idx = 0

        result = self.buffer[self.idx]
        self.idx += 1
        return result


C
Chengmo 已提交
41
class Reader(ReaderBase):
M
malin10 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def init(self):
        dict_path = envs.get_global_env(
            "dataset.dataset_train.word_count_dict_path")
        word_ngrams_path = envs.get_global_env(
            "dataset.dataset_train.word_ngrams_path")
        self.window_size = envs.get_global_env("hyper_parameters.window_size")
        self.neg_num = envs.get_global_env("hyper_parameters.neg_num")
        self.with_shuffle_batch = envs.get_global_env(
            "hyper_parameters.with_shuffle_batch")
        self.random_generator = NumpyRandomInt(1, self.window_size + 1)

        self.word_ngrams = dict()
        with io.open(word_ngrams_path, 'r', encoding='utf-8') as f:
            for line in f:
                line = line.rstrip().split()
                self.word_ngrams[str(line[0])] = map(int, line[1:])

        self.cs = None
        if not self.with_shuffle_batch:
            id_counts = []
            word_all_count = 0
            with io.open(dict_path, 'r', encoding='utf-8') as f:
                for line in f:
                    word, count = line.split()[0], int(line.split()[1])
                    id_counts.append(count)
                    word_all_count += count
            id_frequencys = [
                float(count) / word_all_count for count in id_counts
            ]
            np_power = np.power(np.array(id_frequencys), 0.75)
            id_frequencys_pow = np_power / np_power.sum()
            self.cs = np.array(id_frequencys_pow).cumsum()

    def get_context_words(self, words, idx):
        """
        Get the context word list of target word.
        words: the words of the current line
        idx: input word index
        window_size: window size
        """
        target_window = self.random_generator()
C
Chengmo 已提交
83 84
        # if (idx - target_window) > 0 else 0
        start_point = idx - target_window
M
malin10 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        if start_point < 0:
            start_point = 0
        end_point = idx + target_window
        targets = words[start_point:idx] + words[idx + 1:end_point + 1]
        return targets

    def generate_sample(self, line):
        def reader():
            word_ids = [w for w in line.split()]
            for idx, target_id in enumerate(word_ids):
                input_word = [int(target_id)]
                if target_id in self.word_ngrams:
                    input_word += self.word_ngrams[target_id]
                context_word_ids = self.get_context_words(word_ids, idx)
                for context_id in context_word_ids:
                    output = [('input_word', input_word),
                              ('true_label', [int(context_id)])]
                    if not self.with_shuffle_batch:
                        neg_array = self.cs.searchsorted(
                            np.random.sample(self.neg_num))
                        output += [('neg_label',
                                    [int(str(i)) for i in neg_array])]
                    yield output

        return reader