model.py 9.0 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.fluid as fluid

from paddlerec.core.utils import envs
C
Chengmo 已提交
19
from paddlerec.core.model import ModelBase
M
malin10 已提交
20 21 22 23 24 25 26


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
C
Chengmo 已提交
27 28
        self.is_distributed = True if envs.get_fleet_mode().upper(
        ) == "PSLIB" else False
M
malin10 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number")
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim")
        self.neg_num = envs.get_global_env("hyper_parameters.neg_num")
        self.with_shuffle_batch = envs.get_global_env(
            "hyper_parameters.with_shuffle_batch")
        self.learning_rate = envs.get_global_env(
            "hyper_parameters.optimizer.learning_rate")
        self.decay_steps = envs.get_global_env(
            "hyper_parameters.optimizer.decay_steps")
        self.decay_rate = envs.get_global_env(
            "hyper_parameters.optimizer.decay_rate")

    def input_data(self, is_infer=False, **kwargs):
        if is_infer:
            analogy_a = fluid.data(
                name="analogy_a", shape=[None, 1], lod_level=1, dtype='int64')
            analogy_b = fluid.data(
                name="analogy_b", shape=[None, 1], lod_level=1, dtype='int64')
            analogy_c = fluid.data(
                name="analogy_c", shape=[None, 1], lod_level=1, dtype='int64')
            analogy_d = fluid.data(
                name="analogy_d", shape=[None, 1], dtype='int64')
            return [analogy_a, analogy_b, analogy_c, analogy_d]

        input_word = fluid.data(
            name="input_word", shape=[None, 1], lod_level=1, dtype='int64')
        true_word = fluid.data(
            name='true_label', shape=[None, 1], lod_level=1, dtype='int64')
        if self.with_shuffle_batch:
            return [input_word, true_word]

        neg_word = fluid.data(
            name="neg_label", shape=[None, self.neg_num], dtype='int64')
        return [input_word, true_word, neg_word]

    def net(self, inputs, is_infer=False):
        if is_infer:
            self.infer_net(inputs)
            return

        def embedding_layer(input,
                            table_name,
                            initializer_instance=None,
                            sequence_pool=False):
            emb = fluid.embedding(
                input=input,
                is_sparse=True,
                is_distributed=self.is_distributed,
                size=[self.sparse_feature_number, self.sparse_feature_dim],
                param_attr=fluid.ParamAttr(
                    name=table_name, initializer=initializer_instance), )
            if sequence_pool:
                emb = fluid.layers.sequence_pool(
                    input=emb, pool_type='average')
            return emb

        init_width = 1.0 / self.sparse_feature_dim
        emb_initializer = fluid.initializer.Uniform(-init_width, init_width)
        emb_w_initializer = fluid.initializer.Constant(value=0.0)

        input_emb = embedding_layer(inputs[0], "emb", emb_initializer, True)
        input_emb = fluid.layers.squeeze(input=input_emb, axes=[1])
        true_emb_w = embedding_layer(inputs[1], "emb_w", emb_w_initializer,
                                     True)
        true_emb_w = fluid.layers.squeeze(input=true_emb_w, axes=[1])

        if self.with_shuffle_batch:
            neg_emb_w_list = []
            for i in range(self.neg_num):
                neg_emb_w_list.append(
                    fluid.contrib.layers.shuffle_batch(
                        true_emb_w))  # shuffle true_word
            neg_emb_w_concat = fluid.layers.concat(neg_emb_w_list, axis=0)
            neg_emb_w = fluid.layers.reshape(
                neg_emb_w_concat,
                shape=[-1, self.neg_num, self.sparse_feature_dim])
        else:
            neg_emb_w = embedding_layer(inputs[2], "emb_w", emb_w_initializer)
        true_logits = fluid.layers.reduce_sum(
            fluid.layers.elementwise_mul(input_emb, true_emb_w),
            dim=1,
            keep_dim=True)

        input_emb_re = fluid.layers.reshape(
            input_emb, shape=[-1, 1, self.sparse_feature_dim])
        neg_matmul = fluid.layers.matmul(
            input_emb_re, neg_emb_w, transpose_y=True)
        neg_logits = fluid.layers.reshape(neg_matmul, shape=[-1, 1])

        logits = fluid.layers.concat([true_logits, neg_logits], axis=0)
        label_ones = fluid.layers.fill_constant(
            shape=[fluid.layers.shape(true_logits)[0], 1],
            value=1.0,
            dtype='float32')
        label_zeros = fluid.layers.fill_constant(
            shape=[fluid.layers.shape(neg_logits)[0], 1],
            value=0.0,
            dtype='float32')
        label = fluid.layers.concat([label_ones, label_zeros], axis=0)
C
Chengmo 已提交
130
        label.stop_gradient = True
M
malin10 已提交
131 132 133

        loss = fluid.layers.log_loss(fluid.layers.sigmoid(logits), label)
        avg_cost = fluid.layers.reduce_sum(loss)
M
malin10 已提交
134 135

        global_right_cnt = fluid.layers.create_global_var(
M
malin10 已提交
136 137 138 139 140 141 142 143 144 145 146 147
            name="global_right_cnt",
            persistable=True,
            dtype='float32',
            shape=[1],
            value=0)
        global_total_cnt = fluid.layers.create_global_var(
            name="global_total_cnt",
            persistable=True,
            dtype='float32',
            shape=[1],
            value=0)
        global_right_cnt.stop_gradient = True
M
malin10 已提交
148
        global_total_cnt.stop_gradient = True
M
malin10 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        self._cost = avg_cost
        self._metrics["LOSS"] = avg_cost

    def optimizer(self):
        optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=self.learning_rate,
                decay_steps=self.decay_steps,
                decay_rate=self.decay_rate,
                staircase=True))
        return optimizer

    def infer_net(self, inputs):
        def embedding_layer(input,
                            table_name,
                            initializer_instance=None,
                            sequence_pool=False):
            emb = fluid.embedding(
                input=input,
                size=[self.sparse_feature_number, self.sparse_feature_dim],
                param_attr=table_name)
            if sequence_pool:
                emb = fluid.layers.sequence_pool(
                    input=emb, pool_type='average')
            return emb

        all_label = np.arange(self.sparse_feature_number).reshape(
            self.sparse_feature_number).astype('int32')
        self.all_label = fluid.layers.cast(
            x=fluid.layers.assign(all_label), dtype='int64')
        emb_all_label = embedding_layer(self.all_label, "emb")
        emb_a = embedding_layer(inputs[0], "emb", sequence_pool=True)
        emb_b = embedding_layer(inputs[1], "emb", sequence_pool=True)
        emb_c = embedding_layer(inputs[2], "emb", sequence_pool=True)

        target = fluid.layers.elementwise_add(
            fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)

        emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
        dist = fluid.layers.matmul(
            x=target, y=emb_all_label_l2, transpose_y=True)
        values, pred_idx = fluid.layers.topk(input=dist, k=4)
        label = fluid.layers.expand(inputs[3], expand_times=[1, 4])
        label_ones = fluid.layers.fill_constant_batch_size_like(
            label, shape=[-1, 1], value=1.0, dtype='float32')
        right_cnt = fluid.layers.reduce_sum(input=fluid.layers.cast(
            fluid.layers.equal(pred_idx, label), dtype='float32'))
        total_cnt = fluid.layers.reduce_sum(label_ones)

        global_right_cnt = fluid.layers.create_global_var(
            name="global_right_cnt",
            persistable=True,
            dtype='float32',
            shape=[1],
            value=0)
        global_total_cnt = fluid.layers.create_global_var(
            name="global_total_cnt",
            persistable=True,
            dtype='float32',
            shape=[1],
            value=0)
        global_right_cnt.stop_gradient = True
        global_total_cnt.stop_gradient = True

        tmp1 = fluid.layers.elementwise_add(right_cnt, global_right_cnt)
        fluid.layers.assign(tmp1, global_right_cnt)
M
malin10 已提交
215

M
malin10 已提交
216 217 218 219 220 221
        tmp2 = fluid.layers.elementwise_add(total_cnt, global_total_cnt)
        fluid.layers.assign(tmp2, global_total_cnt)

        acc = fluid.layers.elementwise_div(
            global_right_cnt, global_total_cnt, name="total_acc")
        self._infer_results['acc'] = acc