model.py 8.9 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict

import paddle
import paddle.fluid as fluid

from paddlerec.core.utils import envs
C
Chengmo 已提交
35
from paddlerec.core.model import ModelBase
Y
yaoxuefeng 已提交
36 37 38 39 40 41 42


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
C
Chengmo 已提交
43 44
        self.is_distributed = True if envs.get_fleet_mode().upper(
        ) == "PSLIB" else False
Y
yaoxuefeng 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number", None)
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim", None)
        self.deep_input_size = envs.get_global_env(
            "hyper_parameters.deep_input_size", 50)
        self.use_inner_product = envs.get_global_env(
            "hyper_parameters.use_inner_product", None)
        self.layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes",
                                               None)
        self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
        self.num_field = envs.get_global_env("hyper_parameters.num_field",
                                             None)
        self.act = envs.get_global_env("hyper_parameters.act", None)

    def net(self, inputs, is_infer=False):
        raw_feat_idx = self._sparse_data_var[1]  # (batch_size * num_field) * 1
        raw_feat_value = self._dense_data_var[0]  # batch_size * num_field
        self.label = self._sparse_data_var[0]  # batch_size * 1

        init_value_ = 0.1

        feat_idx = raw_feat_idx
        feat_value = fluid.layers.reshape(
            raw_feat_value,
            [-1, self.num_field, 1])  # batch_size * num_field * 1

        # ------------------------- first order term --------------------------

        first_weights_re = fluid.embedding(
            input=feat_idx,
Y
yaoxuefeng 已提交
76
            is_sparse=True,
Y
yaoxuefeng 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            is_distributed=self.is_distributed,
            dtype='float32',
            size=[self.sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
                regularizer=fluid.regularizer.L1DecayRegularizer(self.reg))
        )  # (batch_size * num_field) * 1 * 1(embedding_size)
        first_weights = fluid.layers.reshape(
            first_weights_re,
            shape=[-1, self.num_field, 1])  # batch_size * num_field * 1
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
                                                1)  # batch_size * 1
        # ------------------------- Embedding --------------------------

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
Y
yaoxuefeng 已提交
95
            is_sparse=True,
Y
yaoxuefeng 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
            is_distributed=self.is_distributed,
            dtype='float32',
            size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0,
                    scale=init_value_ /
                    math.sqrt(float(self.sparse_feature_dim))))
        )  # (batch_size * num_field) * 1 * embedding_size
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, self.num_field, self.sparse_feature_dim
                   ])  # batch_size * num_field * embedding_size
C
Chengmo 已提交
110 111
        # batch_size * num_field * embedding_size
        feat_embeddings = feat_embeddings * feat_value
Y
yaoxuefeng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

        # ------------------------- Linear Signal --------------------------

        linear_input_size = self.num_field * self.sparse_feature_dim
        flaten_feat_embedding = fluid.layers.reshape(
            x=feat_embeddings, shape=[-1, linear_input_size])

        w_z_linear_weights = fluid.layers.create_parameter(
            shape=[linear_input_size, self.deep_input_size], dtype="float32")
        linear_signal = fluid.layers.matmul(
            flaten_feat_embedding,
            w_z_linear_weights)  # batch_size * deep_input_size

        # ------------------------- Quardatic Singal --------------------------

        quadratic_output = []
        if self.use_inner_product:
            w_p_quardatic_weights = fluid.layers.create_parameter(
                shape=[self.deep_input_size, self.num_field], dtype="float32")
            for i in range(self.deep_input_size):
                transpose_embedding = fluid.layers.transpose(
                    feat_embeddings, perm=[0, 2, 1])
                theta = fluid.layers.elementwise_mul(
                    transpose_embedding, w_p_quardatic_weights[i], axis=-1)
                quadratic_output.append(
                    paddle.norm(
                        fluid.layers.reduce_sum(
                            theta, dim=1),
                        p=2,
                        axis=1,
                        keepdim=True))
        else:
            w_p_quardatic_weights_outer = fluid.layers.create_parameter(
                shape=[
                    self.deep_input_size, self.sparse_feature_dim,
                    self.sparse_feature_dim
                ],
                dtype="float32")
            embedding_sum = fluid.layers.reduce_sum(feat_embeddings, dim=1)
            p = fluid.layers.matmul(
                fluid.layers.reshape(
                    embedding_sum, shape=[0, -1, 1]),
                fluid.layers.reshape(
                    embedding_sum, shape=[0, 1, -1]))
            for i in range(self.deep_input_size):
                theta = fluid.layers.elementwise_mul(
                    p, w_p_quardatic_weights_outer[i, :, :], axis=-1)
                quadratic_output.append(
                    fluid.layers.reshape(
                        fluid.layers.reduce_sum(
                            theta, dim=[1, 2]),
                        shape=[-1, 1]))

        quadratic_signal = fluid.layers.concat(quadratic_output, axis=1)

        y_dnn = linear_signal + quadratic_signal

        y_dnn = fluid.layers.relu6(y_dnn, threshold=10000000.0)

        for s in self.layer_sizes:
            y_dnn = fluid.layers.fc(
                input=y_dnn,
                size=s,
                act=self.act,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)))

        y_dnn = fluid.layers.fc(
            input=y_dnn,
            size=1,
            act=None,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)))

        # ------------------------- Predict --------------------------

        self.predict = fluid.layers.sigmoid(y_first_order + y_dnn)

        cost = fluid.layers.log_loss(
            input=self.predict, label=fluid.layers.cast(self.label, "float32"))
        avg_cost = fluid.layers.reduce_sum(cost)

        self._cost = avg_cost

        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
                                                     label=label_int,
                                                     slide_steps=0)
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
        if is_infer:
            self._infer_results["AUC"] = auc_var