fm_model.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from collections import OrderedDict

import paddle.fluid as fluid

from paddlerec.core.utils import envs
C
Chengmo 已提交
21
from paddlerec.core.model import ModelBase
22 23 24 25 26 27 28


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
C
Chengmo 已提交
29 30
        self.is_distributed = True if envs.get_fleet_mode().upper(
        ) == "PSLIB" else False
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number", None)
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim", None)
        self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
        self.num_field = envs.get_global_env("hyper_parameters.num_field",
                                             None)

    def net(self, inputs, is_infer=False):
        raw_feat_idx = self._sparse_data_var[1]  # (batch_size * num_field) * 1
        raw_feat_value = self._dense_data_var[0]  # batch_size * num_field
        self.label = self._sparse_data_var[0]  # batch_size * 1

        init_value_ = 0.1

        feat_idx = raw_feat_idx
        feat_value = fluid.layers.reshape(
            raw_feat_value,
            [-1, self.num_field, 1])  # batch_size * num_field * 1

        # ------------------------- first order term --------------------------

        first_weights_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=self.is_distributed,
            dtype='float32',
            size=[self.sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
                regularizer=fluid.regularizer.L1DecayRegularizer(self.reg))
        )  # (batch_size * num_field) * 1 * 1(embedding_size)
        first_weights = fluid.layers.reshape(
            first_weights_re,
            shape=[-1, self.num_field, 1])  # batch_size * num_field * 1
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
                                                1)  # batch_size * 1
        b_linear = fluid.layers.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=fluid.initializer.ConstantInitializer(
                value=0))  # 1
        # ------------------------- second order term --------------------------

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=self.is_distributed,
            dtype='float32',
            size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0,
                    scale=init_value_ /
                    math.sqrt(float(self.sparse_feature_dim))))
        )  # (batch_size * num_field) * 1 * embedding_size
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, self.num_field, self.sparse_feature_dim
                   ])  # batch_size * num_field * embedding_size
C
Chengmo 已提交
94 95
        # batch_size * num_field * embedding_size
        feat_embeddings = feat_embeddings * feat_value
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

        # sum_square part
        summed_features_emb = fluid.layers.reduce_sum(
            feat_embeddings, 1)  # batch_size * embedding_size
        summed_features_emb_square = fluid.layers.square(
            summed_features_emb)  # batch_size * embedding_size

        # square_sum part
        squared_features_emb = fluid.layers.square(
            feat_embeddings)  # batch_size * num_field * embedding_size
        squared_sum_features_emb = fluid.layers.reduce_sum(
            squared_features_emb, 1)  # batch_size * embedding_size

        y_FM = 0.5 * fluid.layers.reduce_sum(
            summed_features_emb_square - squared_sum_features_emb,
            dim=1,
            keep_dim=True)  # batch_size * 1

        # ------------------------- Predict --------------------------

        self.predict = fluid.layers.sigmoid(b_linear + y_first_order + y_FM)

        cost = fluid.layers.log_loss(
            input=self.predict, label=fluid.layers.cast(self.label,
                                                        "float32"))  # log_loss
        avg_cost = fluid.layers.reduce_sum(cost)

        self._cost = avg_cost

        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
                                                     label=label_int,
                                                     slide_steps=0)
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var
        if is_infer:
            self._infer_results["AUC"] = auc_var